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Preamble

1. Don’t take the name “Mechatronics” too literally
2. The biggest value-added in mechatronics is in 

software
3. Mechanical system control: 

Then: Striving for complexity
Now: More complexity than we can handle!



Copyright (c) 2007,  D. M. Auslander 3

Mechanical Systems

A long history of complexity in mechanical 
devices
Modulation of power for delivery to a target
Broadly applied to physical systems

Motion, thermal, fluid, chemical
Thesis: Software has made this into a new 
game!
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A Little History

Computation in control of early machines
Delivery of power – steam engines
Complex pattern generation – Jacquard loom
Brushed DC motor
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Fairbottom Bobs

Newcommen
engine(~1760)
http://www.ash
ton-under-
lyne.com/bobs
.htm
Ashton under 
Lyne
Pumped water 
from coal pits
Photo ~1880
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Newcomen Engine Control

www.technology.niagarac.on.
ca/courses/tech238g/newcom
en.htm
Atmospheric steam engine
Used water spray to 
condense steam in cylinder
Control of valve based on 
walking beam position
1712, invented first usable 
steam engine
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The Watt Governor

http://www.vintagesa
ws.com/library/steam/
steam.html
For cotton mill
1856
100 HP, 30 RPM
Note flyball (Watt) 
governor
Smithville, Texas, 
USA

Courtesy of Vintage Saws
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Closeup of Governor

Note link that 
connects flyball
to steam valve
Major limitation 
of all classically 
controlled 
mechanical 
systems

Courtesy of Vintage Saws
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Jacquard Loom

http://www.digidome
.nl/history.htm
Punch card driven
1804
Used to weave very 
complex patterns in 
silk
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Silk Woven on a Jacquard Loom
Silver and 
gold threads 
used for the 
pattern
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Still In Use …
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Classical Mechatronics – Brush vs. 
Brushless Motors

Brush motor –
classic mechanical 
system
Rotor – coils
Stator – permanent 
magnets
Commutator
computes

Amplifier

+

-

Magnets

N S

Coils/
Commutator Brushes
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Complexity Limitation in Classical 
Mechanical Systems

No separation of sensing, computation, and 
power
Example: flyball governer

Power to operate steam valve comes from flyball
Must have low-impedance path from main shaft all 
the way to the steam valve
Common physical medium (mechanical)

Example: Brush motor, commutator
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Enter Mechatronics

Yaskawa Electric coined the term around 1970 
to describe brushless motor technology

Trademark, then released
Adding electronics made a completely different 
class of system
Inconceivable in prior era
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Brushless Motor

Brushless –
invert rotor and 
stator
Measurement 
of rotor 
position 
needed to 
properly excite 
stator coils

Multi-channel
Amplifier

Computation

Stator
(coils)

Wires

Wires

Rotor (magnet)

Position
sensor
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Modern Mechatronics

Add economic, compact computation
“The synergetic integration of mechanical 
engineering with electronics and intelligent 
computer control in the design and 
manufacturing of industrial products and 
processes.” (IEEE/ASME Transactions On 
Mechatronics, 1996)
Or, “The application of complex decision-making 
to the control of physical systems”
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What’s Unique?

The shorter definition focuses more strongly on 
the uniqueness of software-driven mechanical 
systems
They can have control complexity beyond the 
wildest dreams of pre-computer engineers
Control – interpreted broadly, not just feedback 
control
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Enabling Technologies - I

Amplification
Vacuum tube, Lee De Forrest, 1906
Flapper nozzle valve, pneumatic and hydraulic

Enabled isolation of measurement, computation 
and actuation

Impedance mismatch vs. impedance match
Optimization of medium
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Enabling Technologies - II
The Emergence of Software

Process control was initial application
Could afford very expensive, large hardware
Improved productivity, reliability
Microprocessor invention dramatically lowered 
cost-of-entry
Now – cheapest way to control power 
modulation
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Real Time Software

Software is data reproducible
Successive program operation with same input data 
produces same output

This is a defining property of computation and 
software – no error propagation!

Essence of digital systems: no complexity limit
However, it is not generally time reproducible
Example – timed loop with histogram
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Same Program, Run Twice

Time (sec)  # less than
2.0E-6 0
4.0E-6 2640102
8.0E-6 16972
1.6E-5 46
3.2E-5 348
6.4E-5 241
1.28E-4 197
2.56E-4 91
5.12E-4 123

Time (sec)  # less than
2.0E-6 0
4.0E-6 2634222
8.0E-6 16968
1.6E-5 65
3.2E-5 362
6.4E-5 230
1.28E-4 214
2.56E-4 100
5.12E-4 160
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Real Time for Mechatronic Control

In brief, specifications (tolerances) for time 
reproducibility
Each module of control software will have its 
own specs
“Hard” (deadline) real time is not usually required
Much of the activity is asynchronous preventing 
deterministic scheduling
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Design Principle

If any mechanical components are present to 
convey information consider replacing them with 
software (first choice) or electronics
Examples

Brushes brushless motor
Carburetor fuel injection
Kinematic linkages, cams motion profiles
Air dampers variable speed motors
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Design Context: The Unit Machine

Domain of applicability
Establish appropriate design methodology
“The elements of a unit machine exchange 
physical power with each other or exchange 
material with little or no buffering”
Unit machine too big can’t handle complexity
Unit machine too small can’t optimize
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Example: Semiconductor Mfg

Courtesy of 
Berkeley Process 
Control, Inc

Redefinition of 
the “unit 
machine”
improved 
throughput by 
3.5 times for a 
system similar 
to this!
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Control Software for a Unit Machine

Must have rapid access to all internal information
Sensors, actuators, states, commands, etc.
Rapid: fast enough to use in control loops
Can be used to optimize operation

Information between unit machines usually 
simple commands, limited scope, slow
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Unit Machine Examples

Wafer handling robot
Commercially defined as unit machine
Often too simple

Denver airport baggage handling
Too complex to be treated as unit machine
Defeated by complexity (my opinion!)

Dynamic definition of unit machine in biology
Human gait change from walking to running
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Industrial Experience: Complexity is 
the Problem

Control (read software) is the largest cause of 
failure in complex manufacturing machines
Failure to understand the consequences of 
complexity lead to unreliable operation, poor 
performance
Mechanical engineers – don’t understand 
software
Software engineers – don’t understand 
machines
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Design Language

A means of describing and documenting 
solutions; map easily to software
More abstract than code

Most code is unreadable – even by the person that 
created it!

Communication vehicle among all stakeholders
Engineering, manufacturing, marketing, 
maintenance, etc.
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Tasks and State Machines

Tasks – Simultaneously executing modules
“A task is a well-defined responsibility” (American 
Heritage Dictionary)
Suitable for complexity levels associated with unit 
machines
Hierarchical organization
Lowest level maps to mechanical system hardware
Higher levels are goal oriented (next slide …)



Software

Hardware
Actuator InterfaceActuator Interface Sensor Interface

Actuator Sensor

Target Object

Actuator Signal
Processing

Sensor Signal
Processing

Feedback Control

Supervisory Control

To other targets

Goal Seeking

To other subsystems

External Communication Operator Interface

Control Software

Outside World

OperatorFacility Network Internet
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Finite State Machines

Internal task structure is finite state machine
States consist of three sections

Entry – executed only after a transition
Action – execute always
Transition test

Tasks and associated state machines provide a 
design model that is widely accessible as well as 
translatable into functioning software
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Implementation Languages

Desired properties in implementation languages
Portability
Clean syntax
Efficient footprint and operation
Well documented
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Software Portability

Primary factor in productivity/economics
Development stages
Production upgrades
Processor generation time: 18 months or less
Mechanical generation time: 5 – 20 years
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Computational Implementation

Clean separation between design and software 
implementation
Focus on mapping design to software

Easily connect sections of software with design 
elements

To the extent possible, weaken the dependence 
on language, OS, environment, hardware 
specifics
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Cooperative Multitasking

Most portable form of multitasking
Requires one major stylistic restriction:

All code must be non-blocking
State machine fits this model very well

“Universal” real time model –
If computer is fast enough, can meet all specs
Often true

Otherwise, interrupts, priorities, etc. involve resource 
shifting
See plenary talk by Michael Pont on this subject
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Low/Medium Level Languages

Object-oriented approach
“Implementing two motors for position control 
within the program was a rather straightforward 
approach …” (Berkeley student)
C, C++ and Java 
Java easier to learn, cleaner syntax, much better 
portability, but has performance problems
C still the most widely used



Copyright (c) 2007,  D. M. Auslander 38

High Level Languages

Programming productivity – lines/day, regardless 
of language
Therefore, use language requiring fewer lines
Code generator (as in Matlab/Simulink) or 
embed into processor (e.g., Labview)
More practical as processors get faster
Still used more for development than production
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Simulation

Crucial step in design process but often skipped
Conceptual and execution errors much more 
easily found than in real environment
Takes initial effort to set up simulation

Engineers don’t want to spend the time!
Dilemma: How to avoid rewriting control code for 
simulation?
Major portability challenge
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Simulation Environments

C, C++, Java
Limited mathematical and plotting support

Matlab/Simulink and other mathematical 
environments

DLL for control code or use code generator
Ch

C for control code; C and limited C++ for simulation 
with rich math and graphics – easy to integrate C



Copyright (c) 2007,  D. M. Auslander 41

Implementation Environments

From lab to production, PC to microcontroller
Real time

General purpose OS (Windows, etc.) ~1 second (can be 
used faster for demo, debug, but not reliable)
Real Time OS (RTOS - QNX, VxWorks, etc) sub-millisecond 
for regular tasks, microsecond for interrupts
Labview-RT – sub millisecond, shell must be Labview
Bare processor – microsecond

Cooperative multitasking improves portability
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Multiprocessor and Networking

Networking becoming ubiquitous even in control 
systems
Many network “standards”
Ethernet gaining ground, but no winner yet
Three network levels (at least!)

Sensor and actuator
Control processor
Factory (sometimes a cell level also)
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Networking and Control Software

Portability again the key
Treat tasks as indivisible network components
Abstract intertask communication

That is, custom application layer for intertask
communication

Allows for isolation of actual network protocols
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Future Directions

Moore’s law still holds, but direction has 
changed

Multi-core processors rather than more powerful
Only likely to impact high-end systems in near future

FPGA (field programmable gate array)
New processor frontier
Fully parallel
Usually viewed as circuit element but complexity has 
increased so now looks like processor with software
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Lessons Learned

Managing complexity is the challenge
Modularity is the primary tool

Unit machine for hardware design
Tasks, state machines for software design

Too much modularity limits the amount of global 
optimization that can be done
Too little leads to unpredictable behavior and cost
Therefore, err on the side of too much modularity
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