
Copyright (c) 2007, D. M. Auslander 1

Mechatronics (Mechanical System
Control): It’s The Software!

David M. Auslander
Mechanical Engineering

University of California at Berkeley

Copyright (c) 2007, D. M. Auslander 2

Preamble

1. Don’t take the name “Mechatronics” too literally
2. The biggest value-added in mechatronics is in

software
3. Mechanical system control:

Then: Striving for complexity
Now: More complexity than we can handle!

Copyright (c) 2007, D. M. Auslander 3

Mechanical Systems

A long history of complexity in mechanical
devices
Modulation of power for delivery to a target
Broadly applied to physical systems

Motion, thermal, fluid, chemical
Thesis: Software has made this into a new
game!

Copyright (c) 2007, D. M. Auslander 4

A Little History

Computation in control of early machines
Delivery of power – steam engines
Complex pattern generation – Jacquard loom
Brushed DC motor

Copyright (c) 2007, D. M. Auslander 5

Fairbottom Bobs

Newcommen
engine(~1760)
http://www.ash
ton-under-
lyne.com/bobs
.htm
Ashton under
Lyne
Pumped water
from coal pits
Photo ~1880

Copyright (c) 2007, D. M. Auslander 6

Newcomen Engine Control

www.technology.niagarac.on.
ca/courses/tech238g/newcom
en.htm
Atmospheric steam engine
Used water spray to
condense steam in cylinder
Control of valve based on
walking beam position
1712, invented first usable
steam engine

Copyright (c) 2007, D. M. Auslander 7

The Watt Governor

http://www.vintagesa
ws.com/library/steam/
steam.html
For cotton mill
1856
100 HP, 30 RPM
Note flyball (Watt)
governor
Smithville, Texas,
USA

Courtesy of Vintage Saws

Copyright (c) 2007, D. M. Auslander 8

Closeup of Governor

Note link that
connects flyball
to steam valve
Major limitation
of all classically
controlled
mechanical
systems

Courtesy of Vintage Saws

Copyright (c) 2007, D. M. Auslander 9

Jacquard Loom

http://www.digidome
.nl/history.htm
Punch card driven
1804
Used to weave very
complex patterns in
silk

Copyright (c) 2007, D. M. Auslander 10

Silk Woven on a Jacquard Loom
Silver and
gold threads
used for the
pattern

Copyright (c) 2007, D. M. Auslander 11

Still In Use …

Copyright (c) 2007, D. M. Auslander 12

Classical Mechatronics – Brush vs.
Brushless Motors

Brush motor –
classic mechanical
system
Rotor – coils
Stator – permanent
magnets
Commutator
computes

Amplifier

+

-

Magnets

N S

Coils/
Commutator Brushes

Copyright (c) 2007, D. M. Auslander 13

Complexity Limitation in Classical
Mechanical Systems

No separation of sensing, computation, and
power
Example: flyball governer

Power to operate steam valve comes from flyball
Must have low-impedance path from main shaft all
the way to the steam valve
Common physical medium (mechanical)

Example: Brush motor, commutator

Copyright (c) 2007, D. M. Auslander 14

Enter Mechatronics

Yaskawa Electric coined the term around 1970
to describe brushless motor technology

Trademark, then released
Adding electronics made a completely different
class of system
Inconceivable in prior era

Copyright (c) 2007, D. M. Auslander 15

Brushless Motor

Brushless –
invert rotor and
stator
Measurement
of rotor
position
needed to
properly excite
stator coils

Multi-channel
Amplifier

Computation

Stator
(coils)

Wires

Wires

Rotor (magnet)

Position
sensor

Copyright (c) 2007, D. M. Auslander 16

Modern Mechatronics

Add economic, compact computation
“The synergetic integration of mechanical
engineering with electronics and intelligent
computer control in the design and
manufacturing of industrial products and
processes.” (IEEE/ASME Transactions On
Mechatronics, 1996)
Or, “The application of complex decision-making
to the control of physical systems”

Copyright (c) 2007, D. M. Auslander 17

What’s Unique?

The shorter definition focuses more strongly on
the uniqueness of software-driven mechanical
systems
They can have control complexity beyond the
wildest dreams of pre-computer engineers
Control – interpreted broadly, not just feedback
control

Copyright (c) 2007, D. M. Auslander 18

Enabling Technologies - I

Amplification
Vacuum tube, Lee De Forrest, 1906
Flapper nozzle valve, pneumatic and hydraulic

Enabled isolation of measurement, computation
and actuation

Impedance mismatch vs. impedance match
Optimization of medium

Copyright (c) 2007, D. M. Auslander 19

Enabling Technologies - II
The Emergence of Software

Process control was initial application
Could afford very expensive, large hardware
Improved productivity, reliability
Microprocessor invention dramatically lowered
cost-of-entry
Now – cheapest way to control power
modulation

Copyright (c) 2007, D. M. Auslander 20

Real Time Software

Software is data reproducible
Successive program operation with same input data
produces same output

This is a defining property of computation and
software – no error propagation!

Essence of digital systems: no complexity limit
However, it is not generally time reproducible
Example – timed loop with histogram

Copyright (c) 2007, D. M. Auslander 21

Same Program, Run Twice

Time (sec) # less than
2.0E-6 0
4.0E-6 2640102
8.0E-6 16972
1.6E-5 46
3.2E-5 348
6.4E-5 241
1.28E-4 197
2.56E-4 91
5.12E-4 123

Time (sec) # less than
2.0E-6 0
4.0E-6 2634222
8.0E-6 16968
1.6E-5 65
3.2E-5 362
6.4E-5 230
1.28E-4 214
2.56E-4 100
5.12E-4 160

Copyright (c) 2007, D. M. Auslander 22

Real Time for Mechatronic Control

In brief, specifications (tolerances) for time
reproducibility
Each module of control software will have its
own specs
“Hard” (deadline) real time is not usually required
Much of the activity is asynchronous preventing
deterministic scheduling

Copyright (c) 2007, D. M. Auslander 23

Design Principle

If any mechanical components are present to
convey information consider replacing them with
software (first choice) or electronics
Examples

Brushes brushless motor
Carburetor fuel injection
Kinematic linkages, cams motion profiles
Air dampers variable speed motors

Copyright (c) 2007, D. M. Auslander 24

Design Context: The Unit Machine

Domain of applicability
Establish appropriate design methodology
“The elements of a unit machine exchange
physical power with each other or exchange
material with little or no buffering”
Unit machine too big can’t handle complexity
Unit machine too small can’t optimize

Copyright (c) 2007, D. M. Auslander 25

Example: Semiconductor Mfg

Courtesy of
Berkeley Process
Control, Inc

Redefinition of
the “unit
machine”
improved
throughput by
3.5 times for a
system similar
to this!

Copyright (c) 2007, D. M. Auslander 26

Control Software for a Unit Machine

Must have rapid access to all internal information
Sensors, actuators, states, commands, etc.
Rapid: fast enough to use in control loops
Can be used to optimize operation

Information between unit machines usually
simple commands, limited scope, slow

Copyright (c) 2007, D. M. Auslander 27

Unit Machine Examples

Wafer handling robot
Commercially defined as unit machine
Often too simple

Denver airport baggage handling
Too complex to be treated as unit machine
Defeated by complexity (my opinion!)

Dynamic definition of unit machine in biology
Human gait change from walking to running

Copyright (c) 2007, D. M. Auslander 28

Industrial Experience: Complexity is
the Problem

Control (read software) is the largest cause of
failure in complex manufacturing machines
Failure to understand the consequences of
complexity lead to unreliable operation, poor
performance
Mechanical engineers – don’t understand
software
Software engineers – don’t understand
machines

Copyright (c) 2007, D. M. Auslander 29

Design Language

A means of describing and documenting
solutions; map easily to software
More abstract than code

Most code is unreadable – even by the person that
created it!

Communication vehicle among all stakeholders
Engineering, manufacturing, marketing,
maintenance, etc.

Copyright (c) 2007, D. M. Auslander 30

Tasks and State Machines

Tasks – Simultaneously executing modules
“A task is a well-defined responsibility” (American
Heritage Dictionary)
Suitable for complexity levels associated with unit
machines
Hierarchical organization
Lowest level maps to mechanical system hardware
Higher levels are goal oriented (next slide …)

Software

Hardware
Actuator InterfaceActuator Interface Sensor Interface

Actuator Sensor

Target Object

Actuator Signal
Processing

Sensor Signal
Processing

Feedback Control

Supervisory Control

To other targets

Goal Seeking

To other subsystems

External Communication Operator Interface

Control Software

Outside World

OperatorFacility Network Internet

Copyright (c) 2007, D. M. Auslander 32

Finite State Machines

Internal task structure is finite state machine
States consist of three sections

Entry – executed only after a transition
Action – execute always
Transition test

Tasks and associated state machines provide a
design model that is widely accessible as well as
translatable into functioning software

Copyright (c) 2007, D. M. Auslander 33

Implementation Languages

Desired properties in implementation languages
Portability
Clean syntax
Efficient footprint and operation
Well documented

Copyright (c) 2007, D. M. Auslander 34

Software Portability

Primary factor in productivity/economics
Development stages
Production upgrades
Processor generation time: 18 months or less
Mechanical generation time: 5 – 20 years

Copyright (c) 2007, D. M. Auslander 35

Computational Implementation

Clean separation between design and software
implementation
Focus on mapping design to software

Easily connect sections of software with design
elements

To the extent possible, weaken the dependence
on language, OS, environment, hardware
specifics

Copyright (c) 2007, D. M. Auslander 36

Cooperative Multitasking

Most portable form of multitasking
Requires one major stylistic restriction:

All code must be non-blocking
State machine fits this model very well

“Universal” real time model –
If computer is fast enough, can meet all specs
Often true

Otherwise, interrupts, priorities, etc. involve resource
shifting
See plenary talk by Michael Pont on this subject

Copyright (c) 2007, D. M. Auslander 37

Low/Medium Level Languages

Object-oriented approach
“Implementing two motors for position control
within the program was a rather straightforward
approach …” (Berkeley student)
C, C++ and Java
Java easier to learn, cleaner syntax, much better
portability, but has performance problems
C still the most widely used

Copyright (c) 2007, D. M. Auslander 38

High Level Languages

Programming productivity – lines/day, regardless
of language
Therefore, use language requiring fewer lines
Code generator (as in Matlab/Simulink) or
embed into processor (e.g., Labview)
More practical as processors get faster
Still used more for development than production

Copyright (c) 2007, D. M. Auslander 39

Simulation

Crucial step in design process but often skipped
Conceptual and execution errors much more
easily found than in real environment
Takes initial effort to set up simulation

Engineers don’t want to spend the time!
Dilemma: How to avoid rewriting control code for
simulation?
Major portability challenge

Copyright (c) 2007, D. M. Auslander 40

Simulation Environments

C, C++, Java
Limited mathematical and plotting support

Matlab/Simulink and other mathematical
environments

DLL for control code or use code generator
Ch

C for control code; C and limited C++ for simulation
with rich math and graphics – easy to integrate C

Copyright (c) 2007, D. M. Auslander 41

Implementation Environments

From lab to production, PC to microcontroller
Real time

General purpose OS (Windows, etc.) ~1 second (can be
used faster for demo, debug, but not reliable)
Real Time OS (RTOS - QNX, VxWorks, etc) sub-millisecond
for regular tasks, microsecond for interrupts
Labview-RT – sub millisecond, shell must be Labview
Bare processor – microsecond

Cooperative multitasking improves portability

Copyright (c) 2007, D. M. Auslander 42

Multiprocessor and Networking

Networking becoming ubiquitous even in control
systems
Many network “standards”
Ethernet gaining ground, but no winner yet
Three network levels (at least!)

Sensor and actuator
Control processor
Factory (sometimes a cell level also)

Copyright (c) 2007, D. M. Auslander 43

Networking and Control Software

Portability again the key
Treat tasks as indivisible network components
Abstract intertask communication

That is, custom application layer for intertask
communication

Allows for isolation of actual network protocols

Copyright (c) 2007, D. M. Auslander 44

Future Directions

Moore’s law still holds, but direction has
changed

Multi-core processors rather than more powerful
Only likely to impact high-end systems in near future

FPGA (field programmable gate array)
New processor frontier
Fully parallel
Usually viewed as circuit element but complexity has
increased so now looks like processor with software

Copyright (c) 2007, D. M. Auslander 45

Lessons Learned

Managing complexity is the challenge
Modularity is the primary tool

Unit machine for hardware design
Tasks, state machines for software design

Too much modularity limits the amount of global
optimization that can be done
Too little leads to unpredictable behavior and cost
Therefore, err on the side of too much modularity

	Mechatronics (Mechanical System Control): It’s The Software!
	Preamble
	Mechanical Systems
	A Little History
	Fairbottom Bobs
	Newcomen Engine Control
	The Watt Governor
	Closeup of Governor
	Jacquard Loom
	Silk Woven on a Jacquard Loom
	Still In Use …
	Classical Mechatronics – Brush vs. Brushless Motors
	Complexity Limitation in Classical Mechanical Systems
	Enter Mechatronics
	Brushless Motor
	Modern Mechatronics
	What’s Unique?
	Enabling Technologies - I
	Enabling Technologies - II�The Emergence of Software
	Real Time Software
	Same Program, Run Twice
	Real Time for Mechatronic Control
	Design Principle
	Design Context: The Unit Machine
	Example: Semiconductor Mfg
	Control Software for a Unit Machine
	Unit Machine Examples
	Industrial Experience: Complexity is the Problem
	Design Language
	Tasks and State Machines
	Finite State Machines
	Implementation Languages
	Software Portability
	Computational Implementation
	Cooperative Multitasking
	Low/Medium Level Languages
	High Level Languages
	Simulation
	Simulation Environments
	Implementation Environments
	Multiprocessor and Networking
	Networking and Control Software
	Future Directions
	Lessons Learned

