
Feedback Control Using Computers

David M. Auslander

September 10, 2001

Note: This article is published in the Encylopedia of Physics, Academic Press

Contents

1 Feedback Control 2
1.1 Compensating for Ignorance . 3
1.2 Why Feedback is Hard: Dynamics . 4
1.3 Feedback Control System Structure . 4
1.4 Amplification and Isolation . 5

2 Computers for Control 6
2.1 Computers and the Physical World . 6
2.2 Signal Conversion . 7
2.3 Discrete Control . 7
2.4 Computational Scale, Micro to Maxi . 7
2.5 Number Representations, Precision and Scaling . 8
2.6 Control System Software: Real Time . 9
2.7 Programmable Logic Controllers (PLC) . 10

3 Simulation 10
3.1 Models of the Control Object . 11
3.2 Numerical Analysis . 11
3.3 Simulation of Hybrid Systems . 12
3.4 Control Software Implementation . 13

4 Basic Feedback Control 13
4.1 Small Signal Behavior: Tracking, Disturbances . 13
4.2 Equilibrium, Stability and State . 13
4.3 On/Off Control . 14
4.4 Proportional Control . 15
4.5 Proportional, Integral, Derivative Control (PID) . 15
4.6 PID Tuning . 16
4.7 Controller Tuning By Optimization . 18
4.8 Disturbance Rejection . 19

1

5 Control Implementation in the Real World 20
5.1 Rule #1: Keep the Error Small . 20
5.2 Setpoint Profiling . 20
5.3 Actuator Saturation . 22
5.4 Integrator Windup . 24
5.5 Noise and Aliasing . 25
5.6 Computational Delay . 26
5.7 Using Knowledge: Feedforward . 27
5.8 Multiple Measurements: Cascade Control . 28
5.9 Gain Scheduling . 28

6 Design Based on Linear Models 28
6.1 The Magic of Linearity . 29
6.2 Linearization . 29
6.3 Transfer Functions . 29
6.4 Difference Equations . 30
6.5 Discrete-Time Transfer Functions . 30
6.6 Equilibrium, Stability and Eigenvalues . 30
6.7 Pole Placement Design . 31
6.8 Linear Quadratic Optimal Control . 31

1 Feedback Control

An engineered system is created according to a specification of what it should do. Many engineered
systems involve the modulation of power in a manner that will meet those specifications. Control
in the broadest sense refers to the means by which the power is modulated or manipulated. The
art of engineering is to design systems that meet their specifications in the most cost effective
way possible. What is considered possible in creating a specification is very much a product of
whatever technological and methodological base is generally known at the time it is created. Control
has traditionally been exerted by humans who adjust the application of power according to their
observation of the evolving result. In systems where the specification is relatively loose or the system
very slow, the human can exert control on an intermittent basis, directing attention elsewhere in the
interim. Examples of this approach abound: a woodworker with a traditional lathe, a cook, heating
a home with a wood or coal stove, driving a vehicle (automobile or horse-drawn), innumerable sports
activities, etc. Some of these activities involve continuous application of control (more-or-less), such
as driving, others are distinctly intermittent such as heating a home with a wood stove.

Prior to the 20th century, neither methodology nor technology existed for reproducing the human-
mediated control process with machines, although both imagination (Jules Verne, for example) and
a small number of notable examples (for example, the Watt steam engine speed governor) whetted
the appetite. It is not a coincidence that virtually every book on automatic control cites the Watt
governor as a historic example; there was not much else available. The 20th century saw the
development of feedback control methodology and technology to the point that it has become a
ubiquitous component in engineered systems. Feedback control is the explicit use of the observe,
decide, act cycle without human presence. It is also called automatic control to recognize the
replacement of the human controller with a machine of some sort. It was primarily applied to large-
scale industrial applications in the early part of the century, power generation using speed control
derived from the Watt governor, and process control using newly invented pneumatic technology.

2

Design methodology was weak in that period with most applications dependent on experience and
experimentation to achieve satisfactory performance. Electronics and war fueled the mid century
developments of feedback control, largely for military applications. That electronics proved to be a
far superior technology for feedback control implementation motivated major developments in design
methodology as well.

As computer technology developed sufficiently for its application to feedback control in the last
third of the century, however, both methodology and technology for feedback control exploded.
Computers were so far superior to previous technologies as the decision-making components that
the entire engineering domain of feedback control was liberated from restrictions on the nature of
computations that could be carried out. While economics still limit what can be accomplished in any
given system design, the uncanny accuracy of Moore’s Law – computing power will double every
18 months – motivates continuing widespread activity in design methodologies. It is the purpose of
this chapter to highlight some of the critical factors needed for successful application of computers
to feedback control. Beyond this article, there is an enormous instructional and research literature
that can be used to provide insights into solution of a wide a variety of difficult problems.

1.1 Compensating for Ignorance

With perfect knowledge there would be no need for feedback control. It would be possible to know
at all times exactly what input would cause the system to have the desired output. However, perfect
knowledge is very expensive (infinitely expensive!) The beauty of feedback control is that, at modest
cost, it can coax maximal performance from imperfect hardware. In other words, compensating for
ignorance (or imperfection) through the observe, decide, act feedback cycle is generally much less
expensive than attempting a better approximation at perfection in order to reach the same level of
performance.

Imagine, for example, controlling the speed of a rotating disk driven by an electric motor. This
situation is typical of large numbers of applications requiring speed control. In the absence of
feedback successful control of this system would require a combination of knowledge of exactly how
the device operates, knowledge of the load being placed on the device at all times, and knowledge of
disturbances from the environment that might cause the speed to vary. “Exact” in this context is
defined as sufficient to allow operation within the specified tolerance for variation of the speed from
its specifications. This would, for example mandate knowledge of bearing operation and associated
friction with changes in speed (the motor could be required to operate at various speeds or with
a continuously varying speed) and changes in friction as a function of temperature and age of the
machine. There would also have to be a means for knowing the precise characteristics of the load,
which could change with device position (such as a robot) or as materials are picked up a dropped
off. With the development of feedback control, control systems such as this that depend on prior
knowledge and calibration have been called “open loop” control systems, with the term “closed loop”
defined as synonymous with feedback control. Where the tolerance for speed control is very loose
(as in a room-cooling fan, for example) this method might work satisfactorily and economically. As
the tolerances are tightened (in a precision grinding application, for example), achieving the desired
control accuracy would get very expensive with open loop control.

Why is feedback control for speed control a more economical solution? Primarily because achiev-
ing high accuracy with an open loop system puts very stringent demands on the manufacture of the
components. They have to be made so that their performance is impervious to most environmental
changes such as temperature, humidity, as well as age of the machine. It is usually almost impos-
sible to predict such changes as must be done if they are larger than the control tolerance so that
design-manufacturing techniques to minimize them are necessary – and expensive. In a feedback

3

control system these types of stringent requirements apply only to the measuring instrument, in this
example a speed measuring instrument. Other components, the motor, the mechanics delivering
power to the target system, etc., can be manufactured to more relaxed tolerances.

Building the measuring instrument to tighter tolerances is much easier than building the power-
delivery part of the system to the same tight tolerances. The primary reason is that measuring
instruments do not have to deliver any significant amount of power – just enough to provide a
readable signal to an amplifier. They can thus be much smaller and because they carry no load, are
not subject to one of the main causes of speed change, load variation.

Thus, the use of feedback control is economically motivated: the main power delivery portion of
the system can be built with short-term reproducibility that meets the performance specification;
only the smaller, less expensive measuring instrument need have long-term accuracy meeting those
specifications.

1.2 Why Feedback is Hard: Dynamics

Feedback control has its limitations. There is a fundamental limitation imposed by the instrument:
the overall performance of the control system cannot be any better than that of the measuring
instrument. There is another fundamental limit imposed by physical realizability: because no phys-
ical system can change state instantly, there is a limit to how fast a control system can respond to
changes in either its command or to changes in disturbances. The “dynamic” behavior of a physical
system describes how it changes in response to a change in its environment, purposeful change as
when motor input power is changed, or unexpected change as when a “downdraft” causes sudden
loss of altitude in a passenger airplane, much to the discomfort of the passengers. This is not to
say that a control system with constant command and unchanging disturbances cannot maintain
performance within specification indefinitely: that is “static” behavior because it does not depend
on internal rates-of-change to meet the specification.

The behavior of a dynamic system depends on the history of what has been done to it. It is not
enough to know what its current inputs are – even if the airplane has moved past the downdraft,
it will take some time to bring it back to its previous flight state. This is the crux of the feedback
control design problem: react too energetically to a deviation from the desired output and the future
consequences may be more than was bargained for. React too timidly and it will take altogether too
long for the system to get to where it should be (maybe never). The essence of the mathematical
side of control engineering is to devise methods for doing the feedback process just right. The
practical side of control engineering is in understanding when and how to apply the mathematics
and in designing the environment in which these mathematical methods are embedded, software and
hardware, so as to build the most effective possible control systems.

The conclusion is that if not for cost considerations it would always be better to use open-
loop control than feedback to meet a given performance specification. Open-loop control can never
cause an otherwise stable system to become unstable. However, engineering cannot be separated
from economics. Feedback is so much more cost effective that its use is essential in many practical
situations.

1.3 Feedback Control System Structure

The classical representation of a control system, the “block” diagram, focuses on the signals that
are used specifically by the control system. The internal structure of the power-delivery system is
not shown.

4

Figure 1 shows a block diagram for the speed control system. As is common in these diagrams,
only the signals actually used by the control system are shown. Environmental disturbances are
sometimes shown on block diagrams, but showing them accurately is complicated because their
power relationship to the system is often different than that of the control input. The block labeled
“power delivery system” usually includes the power amplifier (“drive” for a motor), the actuator,
and the object to which power is being delivered.

Power delivery
system

System
output

Controller
Error

Setpoint
(desired
value)

Measurement
instrument

+

-

Command

Figure 1: Block Diagram of a Speed Control System

Each of the lines is a directed signal, with the direction shown by the arrow, and represents a
single, scalar quantity. In the physical system, these lines represent wires between amplified points,
with the arrow going from the output of one amplifier to the input of another. Double or extra wide
lines are sometimes used to show vector quantities. These are still directed, however, with each of
the vector quantities usually representing a single amplified signal. In cases where one or more of
the signals are delivered via a computer network, there is no direct connection to any single wire in
the physical system since the network carries different signals at different times (see the next section
for more detail on amplification).

1.4 Amplification and Isolation

Amplification, and the isolation afforded by amplification, is one of the major enabling technologies
for feedback control (the other big one is digital computation). Generally speaking, amplification
is the control (or modulation) of a large power flow with a smaller one. the amplifier input (often
also called the command) is the low power signal. It normally modulates the flow of power from a
source to target device.

There are two unique domains of amplification: power amplification and signal amplification.
Of these, power amplification has been known for much longer and was essential for any kind of
control system, open loop or simple feedback control systems. The Watt governor, for example used
a steam valve to modulate the flow of steam to an engine and thus control its speed. Prior to Watt,
the same steam valve was used to manually control the engine speed. A steam valve is a form of
power amplifier. The power source is the boiler, which contains high pressure steam. Turning the
valve stem operates some form of variable blockage that allows more or less steam to flow to the
engine. The level of power needed to turn the valve stem is much lower than the power available
in the flowing steam. Watt cleverly connected an instrument measuring the engine’s speed to the
speed valve so that as the speed increased the flow of steam was reduced, bringing the engine back

5

closer to its desired speed. The instrument was a flyball, a vertical shaft that rotated with the main
engine shaft. On it were a pair of weights hung from the top of the vertical shaft and connected to
it so that they rotated with the shaft. As the shaft speeded up the balls would tend to fly outward.
This outward motion was connected via a linkage to the steam valve so as to cause correct motion
of the steam valve.

The Watt governor utilized the power amplifier, the steam valve, very well. But it suffered from
lack of a signal amplifier. The power needed to operate the steam valve was substantial, even though
much less than the power in the steam flow being modulated. That power was supplied from the
main engine shaft, through the flyball measuring instrument. The flyball and its associated linkages
thus played a triple role: measurement, computation, and power delivery to the steam valve. As a
result, none of these functions could be optimized. All must be compromised by the need to meet
all three requirements simultaneously.

2 Computers for Control

The vacuum tube, and the applications of electronics to signal and power amplification, opened the
door for feedback control in which each of the system elements could be isolated and optimized.
On the decision-making side, electronics could be used to build a wide variety of linear, filter-like
functions. These could be combined to yield a huge variety of functions. As compared to the
Watt governor, for example, the computational flexibility was vastly improved. The problem of
“droop,” the inability of the control system to drive the error to within its tolerance, even if neither
the setpoint nor the disturbances are changing, is difficult or impossible to solve with the Watt
governor. Using an isolated, electronic computing element, however, makes that problem relatively
easy to solve (see “integral mode” control, below).

Flexible as it is, electronics as a computing media is severely limited. It is very effective at
implementing linear operations (those representable by linear, ordinary differential equations) but it
does not do well at nonlinear operations. Some nonlinear operations can be implemented by creative
use of diodes – limits, function generators, peak holders, etc. – but these are difficult to work with
and limited in scope.

Digital computers, on the other hand, have nearly unlimited computing complexity. If a way
could be found to use them as the computing elements in feedback control systems that functionality
could be optimized still further.

2.1 Computers and the Physical World

Using a computer as the computational element for control systems is a real challenge. First, the
internal representation of numerical information is entirely abstract. That is, an internal coding is
used that is arbitrary with respect to any physical realization of that number. Analog electronics used
for control computation provided a relatively easy path in this regard because physical quantities are
represented as voltages (or currents) in the computing circuit giving an easy analog to the external
physical quantities they represent and easy conversion for input to and output from the computing
circuit. There is no such easy path when a computer is used as the computing element in a feedback
control system. Complex conversions must be done to connect the physical world to the computer
and vice-versa.

To make matters worse, computers are also sampling devices. This is also fundamental to the
nature of the beast. Computer architecture is based on the idea of a powerful processing unit that
is capable of executing instructions it gets from a memory. Each instruction is executed in turn,

6

with the central processing unit (CPU) devoting its full attention to that instruction. The result a
is one-thing-at-a-time device so that control of a system happens by a series of discrete operations:
observation, computation, actuation, with each of these operations requiring the execution of thou-
sands of instructions. Thus control action is based on a momentary sample – the control object
is ignored until the next time a measurement is made. This behavior is in contrast to standard
electronic control systems in which all activities are carried out simultaneously. Modern computers
contain some degree of parallelism, but not enough to change the sampling mode of behavior.

2.2 Signal Conversion

Measuring instruments designed for use in systems for which the human operator is providing the
feedback control present their output information in human readable form, most commonly visual.
Instruments designed for use in automatic feedback control systems (or in data logging systems) must
present their outputs in forms that the control system can read. Because computers use electricity
as their primary medium of operation, some form of electrical ouput is needed for measurements.
The most common form of electrical output is an uncoded voltage, in which the instantaneous value
of the voltage has a one-to-one functional relationship with the quantity being measured. Ideally,
that relationship is linear, but linearity is not always achieved.

To be used in the computer, the voltage must be converted into a set of digital (binary) signals
representing a binary integer (see Number Representations, Precision and Scaling, Section 2.5). This
set of signals can then easily be copied into the computer’s memory where it is usable as a “variable”
by the control program. Generally, the value of the voltage scales linearly to the value of the integer.
The device that does this is an “analog-to-digital converter (A/D or A-to-D or ADC).” While the
details of A/D converter operation are not critical to this discussion, the general characteristics of
the device are that it is fairly complex, consisting of digital logic and precision analog components,
requires modest numbers of microseconds to complete a single conversion (which is slow on the time
scale of a modern desktop computer), and typically have a conversion precision ranging from 8 to
16 bits (yielding resolutions from 1:256 to 1:65,536).

2.3 Discrete Control

Both numerical values and time are discrete in computer-based control. Numbers have binary digital
signals as their basis and are thus normally finite precision. Time is discrete because the central
processing unit can only handle one operation at a time. Both of these have severe consequences for
feedback control. Finite precision arithmetic causes round-off error, which appears to the control
system as noise. This is most severe in low-cost systems where economics forces the use of integer
or fixed-point arithmetic.

Time discretization, however, is responsible for the most mischief. Because of the sampling nature
of computer control, the control object is open loop most of the time. Disturbances that occur just
after the computer has taken a sample are not detected until the next sampling instant. Control
quality is improved as the sampling rate is increased, but faster sampling takes more computer power
and is thus more expensive.

2.4 Computational Scale, Micro to Maxi

Personal computers have become a ubiquitous part of professional life – there is one on every desk
to say nothing of the large numbers in homes. These computers are probably most people’s major
conscious image of a computer. Because applications tend to take advantage of the most computing

7

power available, and because the cost of personal computers has dropped so much, the range of
computing power is fairly narrow – there are not too many personal computers over five years old
that are still in regular service.

The situation is very different with computers used for control of physical systems. These comput-
ers are normally embedded within a product and the economics are driven by the overall economics
of the product. Thus, consumer products might impose limits of only $1 to $2 for the computer,
while a machine used in a manufacturing process could allow for several thousand dollars or more for
the control computer. Although all of these are computers and share the same general architecture,
they impose vastly different constraints in terms of the types and amounts of computation that can
be done within the time constraints of satisfactory control.

2.5 Number Representations, Precision and Scaling

How control computers do arithmetic has a significant effect on the control performance and on
the productivity of the programmer writing the control software. In common applications such as
spread sheets, simulation programs, stress analysis, etc., the users are isolated from the internal
numerical representations because the programmers have made sure proper selections have been
made. Programmers using common programming languages, C, C++, Java, Basic, etc., are given a
wide choice of data types but modern computers are capable of handling all of them with minimal
penalty. Given the scale of computers used for control, however, some choices may be precluded
because the performance penalties in these cases are significant.

The major considerations is selecting internal computer data representations to use in a control
calculation are: round-off error, dynamic range and computing efficiency. The easiest number rep-
resentation to use for control calculations is scientific notation, variously called “real” or “floating
point” in different computing environments. Computational scientific notation represents numbers
by a mantissa and an exponent. The mantissa is a fixed-precision, fixed point number. It is multi-
plied by a base to the ’exponent’ power to get the value of the floating point number. The mantissa
is always normalized, meaning that its highest-order digit is always non-zero. In common notation,
a scientific notation number is written as 1.2345*104̂. The part before the asterisk is the mantissa;
the exponent is the part after the .̂ The major differences between the common paper notation
and computer notations are: 1) very few people pay much attention to the number of digits in the
mantissa whereas that is critical in computer representations, and 2) in the computer the numbers
are in base-2 (binary) format so the exponent raises 2 to a power. The major advantage to floating
point numbers is that because the mantissa is always normalized, the calculational precision is in-
dependent of the magnitude of the number (except for extreme numbers). The disadvantage is that
processing of floating point numbers is very complex and thus either expensive or slow (the usual
trade-off with computers). Standard computer floating point data types give from 5 to 15 decimal
digit precision in the mantissa.

Low cost applications cannot afford floating point (given Moore’s Law, however, floating point can
be applied to more applications every year). They are restricted to some form of integer arithmetic.
The simplest form is where the numbers represent whole integers, usually signed. In this case, the
precision of the calculation depends strongly on the magnitudes of the numbers involved. “Precision”
is defined as the ratio of the number to the difference between the number and its nearest neighbor.
Take the number 1,000, for example. Its nearest neighbors are 1,001 and 999. In either case, the
associated precision is 1,000:1. On the other hand, take the number 2. Its precision is 2:1. The
lower the precision, the larger the roundoff error in calculations. Roundoff errors appear as noise
in computer control systems, so can severely affect the quality of control. Maximizing the overall
precision of calculations requires that numbers be scaled so they are large enough to have reasonable

8

precision but small enough to avoid overflow problems (which have catastrophic results). This adds
programming complexity to the job of creating control software.

Fixed point numbers are somewhat more complicated than integers in that they allow for much
more effective handling of quantities between zero and one. However, they suffer from the same
precision problems as integers.

The summary: use floating point if at all possible! Extra hardware cost may pay off in quicker
time-to-market and a more reliable product.

2.6 Control System Software: Real Time

For successful control of a physical system, the events noted on the timeline above (measure, compute,
actuate) must happen at the correct times (within a specified tolerance). “Normal” software (word
processors, numerical computation, spreadsheets, etc.) operate in ASAP mode. That is, the user
would like the result as quickly as possible. Other than impatience if the operation takes too long,
specific times are not a factor in standard software.

Software which must deliver results at specified times, or at specified time intervals after some
external event, is designated ”real time“ software. The added time dimension, plus the fact that
a number of control activities must overlap, makes control system software substantially more of a
challenge to deal with than standard software of approximately equal complexity.

Real time software to implement feedback control has three major components: functions that
service the instruments and actuators, a “main” section that implements the feedback algorithms,
and the operator interface. Typically, the priorities of these components follow the same order –
the instrument-actuator service is highest priority, the feedback next, and the operator interface
is lowest. “Priority” for real time software refers primarily to the importance associated with a
software module executing within a specified time of the event that triggers the module. That time
interval is also called the “latency” specification for a software module. For control software, the
general rule is that all software components must be activated within their latency specification,
so that priority is based almost entirely on the latency specification. Although instruments and
actuators fall into the highest priority class, there are very wide variations in latency requirements
among different types. In most cases, the feedback control loops have similar latency requirements,
so they can all be handled as a group. See Sections 3.4 and 3.3 for details on implementation of the
feedback algorithm section. Finally, the operator interface must respond on human time scales, so
usually has the loosest latency specifications. It is also common to implement the operator interface
on a separate computer to simplify the real time structure. Operator interface concerns are very
important to control system success. However, the subject is too vast to be treated here beyond this
passing reference.

The mechanism used to realize a software system having components with substantially different
latency requirements is the “interrupt” facility that is part of all computer hardware. Interrupts are
triggered by events external to the computer and cause it to switch its attention from one software
section (or “thread”) to another. This switch takes place in a very short amount of time (normally
less than a few microseconds). In this way, software modules with very short latency specifications
can preempt activity by other software modules and respond very quickly to external events. The
most common external event is a signal from a clock; others include switch closures, change in state
of an electrical signal, etc. The computer’s operating system also uses the interrupt system to service
standard peripherals such as the disk drive, keyboard and display.

The general principle in designing software for feedback control is to minimize the use of inter-
rupts. Programs containing interrupts can be difficult to debug, harder to port, and require more
maintenance. Assuming a computer doing nothing but feedback control (perhaps with a number of

9

feedback loops active), all of the feedback loops could operate in non-interrupt mode as could any
of the instruments and actuators that do not need interrupt servicing. Examples of instruments
that do not need interrupts are analog instruments where the signal comes into the computer via an
analog-to-digital converter, instruments with their own digital interface but that have substantial
internal buffering, and on-off instruments. Likewise, on the actuator side, those that run from an
analog command to a power amplifier, for example, do not require any interrupt servicing. On the
other hand, a low-speed pulse width modulation (PWM) signal, which would be suitable for a large
heater, would require interrupt servicing to maintain the accuracy of the PWM command.

Minimizing the use of interrupts requires only one major software design principle: keep all code
non-blocking. All decisions based on external events either cause an action or not, but never wait.
Examples of this style of programming are given in Sections 3.4 and 3.3.

2.7 Programmable Logic Controllers (PLC)

PLCs are a class of computer designed specifically for industrial use and, traditionally, programmed
using ladder logic. PLCs were originally designed as a replacement technology for relay logic, a means
of implementing Boolean and sequential logic using sets of contacts and solendoids (”relays”). As
such, the original device was suitable for solving problems suitable for digital logic representation,
with instruments and actuators using logic (on/off) for input and output. As its use expanded,
facilities were added so that more general computation (using regular numerics rather than just logic
values) could be mixed with the ladder programs. Eventually, a set of languages was established
as a standard for these devices, ISO/IEC 1131 (International Organization for Standardization
(www.iso.ch), International Electrotechnical Commission (www.iec.ch)). The language set includes
ladder programming and an algorithmic language, as well as other programming means.

Implementing feedback control using sequential logic is beyond the scope of this article, so the
reader is referred to other texts on PLC programming. Using the algorithmic programming facility
of IEC 1131 is the same as implementing feedback control with any other programming language,
so all of the material here is relevant.

3 Simulation

If the physical control object or a reasonable physical model or prototype of it is not available (for ex-
ample, not yet built) or if experimentation with it would be either too expensive, too time-consuming,
or too dangerous, some form of control algorithm design and tuning based on mathematical formu-
lations can be done. There are two main ways to start this process: simulation or linear systems.
The issue here is not excluding the use of one technique or another, but of having a general notion
of how to start. By the time the process is over, if the problem is a difficult one, every relevant
technique in the book will be thrown at it!

In the past (i.e., when computing was very expensive) there was no question at all: the linear
systems approach could produce results for many practical problems whereas the lack of generality
of a simulation combined with the expense of getting results (which required a lot of computation)
rendered it of little value except in the extreme. Computational cost, however, is no longer a serious
limitation and the cost per unit of computation continues to decline. With low-cost computation
available, the advantages of simulation can be considered: much more generality in the nature of
mathematical models that can be used and few limits on the types of performance measures that
can be applied.

Most control classes are taught from the assumption that the linear systems approach is the better
way to start a control system design problem. However, the computing power now available, along

10

with effective mathematical software tools, makes the simulation approach extremely attractive.
Thus, simulation is introduced first here as the preferred means for an initial approach to a control
system design or analysis problem.

3.1 Models of the Control Object

What is a simulation? It is a numerical result obtained by solving a set of equations that purport to
describe the desired aspects of the system-of-interest’s behavior. The numerical result can be viewed
in some appropriate form by a human analyst, who would then make some decision and, perhaps,
do another simulation. It could also be used in further numerical procedures that analyze the result
and make decisions that could also result in the execution of another simulation. As computing
power has advanced to the point of being able to run multiple simulations in an automated process
of analysis or optimization simulation has risen in its importance as a primary design and analysis
tool.

The “purports to” modifier in the above paragraph is a very important part of the mathematically-
based process – simulation, linear theory, or any other approach. While this article mainly addresses
issues in producing and using the simulation results, a separate and equally important part of the
job is the verification that the model (i.e., the set of equations) actually does describe the system-
of-interest sufficiently well.

Most control objects to which computer control will be applied can be described with differential
equations. Ordinary differential equations (ODEs) suffice in many cases; the discussion here will be
limited to those cases. There are, however, important control problems where the control object is
more properly described with partial differential equations.

dx1
dt = f1(x1, x2, ..., xn, t)
dx2
dt = f2(x1, x2, ..., xn, t)
...

(1)

3.2 Numerical Analysis

Producing a simulation result requires a numerical solution to the set of ODEs representing the
system. Control problems are almost universally initial condition problems, meaning that the values
of the state variables are known at time t = 0. Since the system equations, equation 1, are generally
nonlinear, only aproximate solutions can be produced. Using the fact that initial conditions are
always known, the method of solution is to define a small, but finite, time increment, ∆t, and then
to approximate the values of the derivatives of all of the state variables during that time interval.
There are many ways to do that, each having different properties in terms of the accuracy, stability
and efficiency of the solution. The simplest approximation is that of Euler, in which the derivatives
are computed at the beginning of the time interval, and assumed to be constant for the entire
interval.

x1(t+∆t) = f1(x1(t), x2(t), ..., t)∆t+ x1(t)
x2(t+∆t) = f2(x1(t), x2(t), ..., t)∆t+ x2(t)
...

(2)

This format is intuitive and easy to understand as it basically expands the finite difference
definition of the derivative. Since everything is known at zero-time, the right-hand side is completely
determined and the solution is easy to start. However, except in cases where neither computing time
nor stability of the numerical solution are very important, the Euler solution method is rarely used.

11

Of the large number of possible methods, the most popular are the Runge-Kutta solutions. These
are based on better approximations to the right-hand side obtained by expanding a Taylor series
around the current point. Runge-Kutte solutions of various order are available; the fourth order
version is probably the most popular giving a good compromise between complexity of coding and
efficiency of the solution. Most popular implementations also use an adaptive step size. In addition
to the approximation to the one step ahead solution an estimate of the error is also produced. The
step size is then adjusted until the error estimate falls below specified bounds. This is particularly
important for nonlinear problems where the appropriate step size changes as the solution proceeds.

The Euler and Runge-Kutta methods and others like them are “explicit” ODE solvers. They are
simple to implement but have the property that the maximum allowable step size is determined by
the fastest behavioral mode of the system being simulated regardless of whether the details of the
fast modes are important or not. For systems containing modes with widely separated characteristic
times, this can lead to very inefficient solutions. “Implicit” methods handle these “stiff” equation
sets much more efficiently if the fast details are not important. However, they are much more
complex to code and take much more computing time per step.

3.3 Simulation of Hybrid Systems

Digital control systems are hybrids. The control object exists continuously in time (thus the differ-
ential equation representation) while the controller is discrete and is only active for brief periods of
time. The simulation software can recognize this situation by embedding a mini-event-manager into
the main simulation loop.

The first part of the simulation program sets parameter values, initializes, state variables, etc.
The working part of the program is the simulation loop. The main simulation loop has two parts: the
event manager which controls execution of the discrete functions (those that the control computer
would be doing) and the ODE solver for the continuous part of the system (normally the control
object).

The event manager generally handles execution of one or more control (feedback) loops, data
logging, external events that might affect operation, and when to terminate the simulation. On
each pass through the event manager code associated with all relevant events is executed and each
of those events sets the time at which it will again need attention. The ODE simulation section
then solves the system equations for the control object up to the time of the next event. Any ODE
algorithm can be used; the sample software uses both fixed step size Euler solvers coded inline with
the event loop and Matlab solvers that use a separate file for the differential equation righthand
sides.

Any of the contol simulation programs can serve as a template for this approach to control
system simulation. The BasicTank.m-BasicPtank.m set of files simulates the control of liquid level
in a single tank using the Matlab ODE solvers (which solver is used can be changed by just changing
the function call name). MassMotion.m, on the other hand, uses an inline Euler solver to show the
effect of different setpoint profiles on position control of an inertial load. The inline Euler solution is
not as efficient or stable numerically but allows for the simulation to be completely contained within
one file avoiding the necessity of transfer of parameters between the main file and the ode-file. Space
limitations prevent inclusion of any of the actual code here, but examination of the files should
display the simulation structure clearly.

12

3.4 Control Software Implementation

As noted in Section 2.6, the structure of the feedback control portion of the real time program
was deferred until after the simulation structure was discussed. The biggest difference between the
simulation software and the actual control software is that no simulation section is needed for the
actual implementation – “nature” solves the ODE! The other significant difference is that time
being real must be determined by an external clock rather than through an internal calculation.
The program determines the “current” time by a call to a system utility that reads the computer’s
clock (the clock is external to the central part of the computer, the CPU, but is normally part of
the hardware set that makes up a functioning computer.

Any number of control loops and other events can be handled with this structure. The perfor-
mance restriction is, as is the case with all real time software, making sure that all control loops meet
their latency restrictions. For feedback control loops, errors in when they run show up as noise in
the control calculation. Large errors can affect stability and performance of the control loop. Since
several control loops could conceivably be ready to run at the same time, the worst-case latency
error is the sum of the execution times of all of the control loops. This can be calculated (based on
computer performance figures) or measured experimentally and used to specify the computer speed
needed to meet specifications for a given control configuration.

4 Basic Feedback Control

The dynamics of the control object is the largest source of difficulty in implementing control so most
of the techniques devised to design controllers deal with dynamics and controller “tuning.” Tuning
refers to the process of setting parameter values so as to achieve satisfactory performance. In the
digital control world, a “controller” is a section of software that implements an algorithm that takes
the measurement of the control object’s output as its input and produces as its output the actuation
signal. In subsequent discussions, the term “control algorithm” will be used rather than “controller.”

4.1 Small Signal Behavior: Tracking, Disturbances

The most fundamental behavior of a control system is exhibited by its response to small changes in
either the setpoint (desired value) or in a disturbance. The behaviors that are important to observe
are, for the short-term characteristics – is the response monotonic or does it oscillate, does the
oscillation persist or die away – and in the long term how much change there is in the output for
a given change in either the setpoint or disturbance (ideally, the long-term change should be equal
to the setpoint change and be unaffected by disturbances).

4.2 Equilibrium, Stability and State

These three terms from system theory are important in understanding and characterizing the behav-
ior of control systems. The “state” of a system is characterized by a set of variables (not surprisingly
called state variables) such that if at any instant the values of those variables are known and the
future inputs to the system are known then the complete future behavior behavior of the system
is determined. Classes of systems to which this characterization can be applied are called “state-
determined systems.” The state variables provide information about the independent energy storage
modes in the system. The particular set chosen is not unique, since any linearly independent sum of
state variables is an equally valid state variable. The necessary number of state variables is unique.

13

A system is at “equilibrium” if for a constant input none of its states is changing. Thus, an
equilibrium point in the state space is a point at which the rates-of-change for all of the state
variables are zero (the state-space is the space for which each state variable is an axis). For example,
a tank with liquid coming into it from above and liquid draining from the bottom can be characterized
by a single state variable — liquid level or volume of liquid in the tank would be the most common
choices. It is at an equilibrium point in its (one-dimensional) state space when the inflow is exactly
balanced by the outflow.

“Stability” refers to what happens when an equilibrium is perturbed. A stable system will return
to its equilibrium. In the tank example, if a bucket of water is suddenly thrown into the tank, the
water level will rise above its equilibrium value. After a while, however, the level will go back to
the equilibrium. Such a system is stable, in this case asymptotically stable because it returns to the
equilibrium exponentially. An inverted pendulum, on the other hand, which is carefully balanced in
its upright position will never return to the equilibrium position if it is given a little push.

An understanding of stability is of critical importance in control system design because the
addition of a controller to a system which is otherwise stable can cause unstable behavior. A
controller can also be used to stabilize an otherwise unstable system such as an inverted pendulum.

4.3 On/Off Control

By far the easiest control algorithm is on/off– if the output value of the control object is above the
setpoint turn the actuation to its minimum value (which is often off) otherwise turn it full on. This
scheme also matches the common situation is which the actuation device is only capable of running
in these modes. On/off actuators are usually considerably less expensive than those with a full range
of operating values. Heating and cooling equipment, for example, often works this way. Figure 2
shows the response of a simulated single tank, liquid level control system using on/off control. The
discrete nature of the digital control shows up in the graph of inlet flow (actuation) which holds the
same value from one sampling instant to the next.

0 0.5 1 1.5 2 2.5
1.5

1.55

1.6

1.65

1.7

Time

h
an

d
S

et

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

Time

Q
in

Figure 2: On/Off Control, Simple Tank

14

The result is mixed. The output (liquid level) stays near the setpoint, but keeps oscillating as
the actuator goes from full on to off. Thus, this kind of control is satisfactory where the tolerance
on the output is fairly weak (as it is, for example, in a home heating and/or cooling system which
uses this method).

4.4 Proportional Control

The simplest control algorithm beyond on/off, and one that is intuitively appealing, is to make the
controller output proportional to the error,

m = kpε (3)

where, 6 = r− y is the error, r is the reference (setpoint) value, y is the output of control object
and m is the controller command (actuation) output. To be a bit more precise, the control object
output is not directly known, only its measurement, ỹ, is actually available to the controller. This
detail is often ignored in preliminary analysis because the instrument is commonly of much better
quality than any other parts of the system so its imperfections can be ignored, at least initially.

0 0.1 0.2 0.3 0.4 0.5
1.5

1.55

1.6

1.65

Time

h
an

d
S

et

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

Time

Q
in

Figure 3: Proportional Control, Simple Tank

Figure 3 shows the response for the same liquid level control system with proportional control.
The behavior is much smoother than with on/off control, but, in this case, the output never quite
reaches its desired value.

4.5 Proportional, Integral, Derivative Control (PID)

The most notable problem with using proportional control of liquid level is that the output never
quite reaches the desired level (steady-state offset). This can be corrected by adding an additional
mode to the control based on the integral of the error, the ”I” mode. In this case the basic controller
equation becomes,

15

m = kpε+ ki ε dt (4)

This classic form of the PI control law cannot actually be realized with a computer controller
because of its discrete operation. Instead, a summation as an approximation to the integration in
usually used.

Figure 4 shows that the addition of integral action solves the problem of steady state offset, with
little change otherwise in the behavior.

0 0.1 0.2 0.3 0.4 0.5
1.5

1.55

1.6

1.65

Time

h
an

d
S

et

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

Time

Q
in

Figure 4: PI Control, Simple Tank

4.6 PID Tuning

Finding the best spot in the three-dimensional PID parameter space can be a daunting enterprise.
A variety of techniques are available to accomplish this end. In many cases, the field tuning is
the preferred environment. With the actual system built and available for experimentation and
the control algorithm selected and implemented, the controller parameters are then selected based
on experiments performed on the actual system. The problem with a purely experimental method
is that even with only three parameters to tune, a full search of the space is rarely practical. A
set of guidelines can reduce the dimensionality of the search to a manageable level. A simplified
set of rules for hand-tuning a PID control that reduces the three-dimensional search to a series of
one-dimensional searches is:

1. With kd and kd set to zero, start with a very low P-gain (kp) and increase it slowly until
performance starts to deteriorate. Back off to a bit below this point. If the performance
is satisfactory, the search is probably finished (additional control modes may improve the
performance a bit, but at the expense of added complexity and possibly, robustness.

16

2. Determine whether the response obtained with the final P-gain suffers more from problems of
oscillation and instability or from problems of steady-state error.

3. If stability problems dominated the search for a P-gain, proceed to tune the D-gain; if steady-
state error problems predominate, proceed to tune the I-gain.

4. D-gain: Increase kd slowly and see if the performance improves. If it doesn’t, keep the D-gain
at zero. If it does, continue until the best performance is obtained. At this point, it may be
possible to increase the P-gain and, possibly the I-gain to improve performance still further.
Proceed to I-gain tuning if that has not yet been done and the steady-state error is still too
large.

5. I-gain: Increase ki slowly to eliminate the steady-state error. When the best performance
has been obtained, try reducing the P-gain a bit, and then retune the I-gain to try for better
performance. Proceed to D-gain tuning if that has not been done yet.

This procedure assumes that the controller sampling interval has already been chosen. Although
there can be some interaction with the tuning procedure, any choice of sampling interval based on
performance will always select for faster sampling. Thus, by the time the controller tuning starts,
the sample interval has probably been reduced to as low a value as is practical.

A system consisting of two tanks connected by a pipe allowing flow in either direction has more
difficult dynamics than the single tank system used as an example above. Figure 5 shows a hand-
tuned result, using the above rules, for small signal behavior of a two tank system. As compared to
the single tank system, the use of derivative control is necessary to achieve reasonable stability, and
the best (eyeballed) behavior still has some oscillation in it.

0 0.5 1 1.5 2 2.5
0.71

0.72

0.73

h1

0 0.5 1 1.5 2 2.5
0.71

0.72

0.73

h2
 a

nd
 S

et

0 0.5 1 1.5 2 2.5
2.5

2.6

2.7

2.8

Time

Q
in

Figure 5: PID Control of Two-Tanks, Hand Tuned

17

4.7 Controller Tuning By Optimization

While simulations are often used to hand-tune controllers, that process can be automated. The
computing load to do that is quite high, but is not unreasonable for many problems. The most
direct method is to define a scalar performance measure for the control system and then apply
an optimization technique to find the controller parameter set that gives the best value of that
performance measure.

The simplest performance criterion is the integral (or sum) of the squared error. This is a pure
output-based criterion in that it does not weight the input effort at all. There are many variants of
this that are in use, but the squared error will do for an example. Performance criteria that also
weight the input effort can be used where energy is a consideration (as in a system that carries its
own fuel) or where smoothness is important as well as how quickly the error is reduced. Although
the definition of a quantitative performance index seems to add a degree of objectivity beyond the
“eyeball” method so often used in hand tuning, the procedure can actually be more arbitrary than
one might imagine. Significantly different results can be obtained for different performance criteria,
all of which seem perfectly reasonable, different operating conditions (setpoint change, disturbance),
even different length of simulation run.

The hand-tuned control system of Figure 5 was optimized based on an error-squared performance
criterion. The result is shown in Figure 6. The results are very similar. In fact, the performance
measure for the hand-tuned case is J=1.19; the optimizer was only able to reduce it to 1.09 (the
hand tuning was done by eye without reference to any quantitative index). The optimizer used
was the fminsearch() function of Matlab. It uses the Nelder-Mead nonlinear, unconstrained simplex
method. This method isn’t necessarily the most efficient, but it tends to be quite robust. Several
starting points, including the hand-tuned gains, were used to give some confidence that there were
not any other peak points that were missed (multi-modal space). The optimized result had gains
very similar to the hand-tuned gains, except for the integral gain which was nearly doubled.

0 0.5 1 1.5 2 2.5

0.72

h1

0 0.5 1 1.5 2 2.5

0.72

h2
 a

nd
 S

et

0 0.5 1 1.5 2 2.5
2.4

2.6

2.8

Time

Q
in

Figure 6: PID Control of Two-Tanks, Optimization Tuned

18

Because much of the early part of the response necessarily has a large error, a common variant
of the error-squared criterion is to multiply error-squared by time. This tends to weight the latter
part of the response more heavily than the earlier part. A tuning optimization on this basis was
also done, but did not result in a significantly different behavior.

4.8 Disturbance Rejection

The optimization in the section above was done for a change in setpoint. The purpose of feedback
control is to insulate a system from changes in its environment. Setpoint change is only one possibility
of many, although different from most in that it is changed purposely. The term “disturbance
rejection” generally refers to how well the feedback control system can maintain the desired setpoint
when external conditions change. A case in point for the two-tank system is when the inflow is not
what is expected. This could happen, for example, if a calibrated valve is used with no feedback
measurement of the actual flow. In that case, a change in properties of the liquid (temperature,
density, viscosity, etc.) could cause the flow to be different from the expected calibration. The
difference between the actual and expected flow rates appears as an external disturbance.

Figure 7 shows the response to such a disturbance. The controller tuning used is the optimum
tuning that was determined above for a change in setpoint.

0 0.5 1 1.5 2 2.5 3 3.5
0.7

0.72

0.74

h1

0 0.5 1 1.5 2 2.5 3 3.5
0.7

0.72

0.74

h2
 a

nd
 S

et

0 0.5 1 1.5 2 2.5 3 3.5
1.5

2

2.5

Time

Q
in

Figure 7: Disturbance Rejection, Two-Tank System, Original Tuning

Running the optimizer again for the disturbance rejection case resulted in a very different gain
set. As the results in Figure 8 show, a much higher integral gain was used to bring the tank height
back towards the setpoint very quickly, but at the expense of more oscillatory behavior. This case
is a good illustration of the dilemma of tuning: there is no one “best” tuning. What is best will
depend entirely on what conditions of operation and performance measures are used.

19

0 0.5 1 1.5 2 2.5 3 3.5
0.7

0.72

0.74

0.76

h1

0 0.5 1 1.5 2 2.5 3 3.5
0.7

0.72

0.74

0.76

h2
 a

nd
 S

et

0 0.5 1 1.5 2 2.5 3 3.5
1.5

2

2.5

Time

Q
in

Figure 8: Disturbance Rejection, Two-Tank System, Retuned for Disturbance

5 Control Implementation in the Real World

The material presented thus far gives the basics of control, but doesn’t solve very many real problems.
Probably the most restrictive aspect has been the assumption of small-signal behavior; real world
problems often require large changes in operating variables. This section examines some of these
issues in an effort to bring the methodology closer to what is needed to build successful control
applications.

5.1 Rule #1: Keep the Error Small

To some extent, the small signal domain can be forced. As long as the controller error is small,
even if the system is in the midst of a large change, many of the advantages of small signal behavior
are retained. The controller error comes about from two factors: changes in setpoint, which can
be limited, and changes in disturbances, which are exogenous and cannot be controlled. Although
the system operator may request a large change in setpoint, the whole change does not have to be
passed to the controller at once. Imposing a gradual setpoint change, within the physical limits of
the actuator-control object to respond, keeps the error very small during the change. If properly
designed, the speed of the change can be almost as fast as other methods of dealing with large
setpoint changes, and even as fast or faster in some cases.

5.2 Setpoint Profiling

There are two approaches to profiling the setpoint so as to keep the behavior within the physical
limitations of the control object and thus keep the error small: 1) use program logic to specify certain
functions that the setpoint will follow during changes (e.g., constant slope) or, 2) pass the setpoint
through a linear, low-pass filter to “soften” its behavior. The former approach (program logic) will
be used here, primarily because it matches the actual physical limitations that actuators have better

20

than the linear filter. Motors tend to have speed or current limits, pumps have flow rate limits,
heaters have power limits, etc. These types of limitations generally impose limits on such geometric
properties as slopes. A linear filter, on the other hand, because of its linear properties scales its
response to have the same shape regardless of the size of the change. If the filter parameters are
set so that the maximum slope matches the physical limitation, the reponse will be too sluggish for
smaller changes. Also, the program logic based methods have an identifiable “end” to the setpoint
change process, which could be useful in coordination with other parts of the system; linear filters
usually have asymptotic behavior. An advantage to using linear filters for softening is that the
behavior of the entire control system can be analyzed using linear system theory, which cannot be
done when program logic is used for softening.

The use of setpoint profiling is illustrated for the case of motion control – moving an inertial load
from one point to another (file MassPosition.m). For the purposes of this problem, it is assumed
that perfect measurements exist for the position and velocity of the mass (note: with a change of
names, this simulation would apply equally to rotary positioning of a load with angular inertia).
The control structure uses an interior control loop for the velocity control and an exterior loop for
the position control. Each of these loops has just a P (proportional) control. This structure is called
“cascade” control (see Section 5.8).

Figure 9 shows the small signal behavior of this system with nominal hand tuning of the P gains
for the velocity and position loops. These same controller gains are used for all examples in this
section. The response shows a small overshoot and smooth behavior. The applied force stays within
its limits.

0 2 4 6 8 10 12
0

1

2

3

P
os

iti
on

0 2 4 6 8 10 12
−2

0

2

4

V
el

oc
ity

0 2 4 6 8 10 12
−5

0

5

Time

A
pp

lie
d

fo
rc

e

Figure 9: Positioning a Mass: Small Move, No Profile

When the distance to be moved is increased, the force reaches its limit immediately because of
the large initial error. Figure 10, using exactly the same controller gains as in Figure 9, shows an
unsatisfactory response. The overshoot is large and the position has a slowly converging oscillation
about the setpoint. Throughout this whole period, the force is either at its maximum or its minimum,
behaving more like an on-off control than a proportioning control.

21

0 2 4 6 8 10 12 14 16
0

10

20

30

P
os

iti
on

0 2 4 6 8 10 12 14 16
−10

0

10

V
el

oc
ity

0 2 4 6 8 10 12 14 16
−5

0

5

Time

A
pp

lie
d

fo
rc

e

Figure 10: Positioning a Mass: Large Move, No Profile

Figure 11 shows the behavior for a move of the same length but using a trapezoidal setpoint
profile with the same controller gains. There is almost no overshoot and the response settles to
its final position very quickly. Because of the setpoint profile, the error is always small and the
applied force stays within its limits for the entire move. The trapezoidal profile has three sections:
constant acceleration, constant velocity, constant deceleration. It is built around the two primary
physical limitations of motor-driven systems: maximum acceleration due to current limitations and
maximum velocity due to bearing and strength limitations.

An even smoother behavior can be obtained by using an S-shaped acceleration zone. The corners
between the acceleration zones and the constant velocity zone in the trapezoidal profile cause sharp
changes in the force. If the mechanism includes a structure with any flexibility, for example, these
sharp changes could cause undesirable vibration. There are several ways to do this. Figure 12 shows
the system behavior with a sinusoidally based profile. Note that it is substantially smoother than
the response using the trapezoidal profile, although at the expense of a somewhat longer time to
reach the final position. This profile is built using the same maximum acceleration, cruise velocity
and controller gains as were used for the trapezoidal profile.

5.3 Actuator Saturation

One consequence of not keeping error small is that the controller will ask for actuation output that
cannot be attained, causing actuator “saturation,” as was seen in the large move done without a
setpoint profile in the previous section. There can be adverse effects on the actuator itself as well as
issues associated with the performance of the control system if saturation occurs. The adverse effects
range from damage to the actuator (for example, demagnetizing a motor) to changes in behavior
during saturation such as actuator sticking where a certain amount of time or signal size is required
to get it out of the saturation condition.

While an actuator is saturated, the feedback control is, in effect, deactivated. In many cases,

22

0 2 4 6 8 10 12
0

10

20

P
os

iti
on

0 2 4 6 8 10 12
−2

0

2

4

V
el

oc
ity

0 2 4 6 8 10 12
−2

0

2

4

Time

A
pp

lie
d

fo
rc

e

Figure 11: Positioning a Mass: Large Move, Trapezoidal Profile

0 2 4 6 8 10 12 14
0

10

20

P
os

iti
on

0 2 4 6 8 10 12 14
−2

0

2

4

V
el

oc
ity

0 2 4 6 8 10 12 14
−2

0

2

4

Time

A
pp

lie
d

fo
rc

e

Figure 12: Positioning a Mass: Large Move, Sinusoidal Profile

the only problem caused by this is that the response time is lengthened and the feedback controller
becomes active again when the saturation condition ends. If the system is open-loop unstable,
however, the feedback control is required for stabilization. While the actuator is in saturation, this
stabilizing influence cannot be exerted. In this case, the effect would be catastrophic and it would
be very difficult or impossible to regain control.

23

5.4 Integrator Windup

A particular, well-known side effect of actuator saturation is integrator windup, which is a particular
problem in digital control because of the large dynamic range of internal number representations.
Briefly, what happens is that when the actuator goes into saturation, because of a large error, the
integrator continues to accumulate. The integrator may have already become fairly large because
the error is large. As long as the acutator stays saturated it cannot respond to larger controller
output values. The integrator, however, seeing the large error, keeps adding more and more to
its accumulated value at each sample time. In computer control using some form of floating point
number, there is no practical limit to how large that number can get.

Sooner or later, the error starts decreasing. However, the integrator term is by that time so large
that the controller maintains the actuator in its saturated state. At some point, the error which
reach and just cross zero. Until that time, the integrator cannot even begin to decrease. Thus,
at the time the error is crossing zero, the controller is in a state at which it is still commanding
maximum actuation output and will continue to do that for quite some time. The error thus changes
sign, but continues in the same direction at a very high rate-of-change until the integrator actually
comes down to a reasonable value. The net result of this: the controlled variable oscillates wildly.
A completely unacceptable behavior. This is not a function of controller tuning. A controller with
excellent small-signal behavior can exhibit integrator windup.

The two tank system of Figure 6 was tuned on the basis of small-signal behavior. Figure 13 shows
the same system, but with a large change in setpoint and no setpoint profiling. It doesn’t bear any
resemblance to the small signal response at all because saturation is a nonlinear effect so the shape
of the response is not preserved as the size of the setpoint change. This response is a relatively
mild case of integrator windup, but the windup can be seen clearly in the figure by noting that the
level of the liquid in the second tank crosses the setpoint, but the controller remains saturated at
its maximum value for a long time after that as the integrator slowly winds down.

0 2 4 6 8 10 12
0

1

2

3

h1

0 2 4 6 8 10 12
0

1

2

3

h2
 a

nd
 S

et

0 2 4 6 8 10 12
6

8

10

Time

Q
in

Figure 13: PID Control of Two-Tanks, Large Setpoint Change, No Windup Protection

24

As demonstrated in Section 5.2, setpoint profiling can be used to retain small signal characteristics
by keeping the error small. For the case of saturation, another (and simpler) method is to explicitly
prevent the integrator windup but otherwise leave the control algorithm intact. The method used in
this case to prevent windup is to freeze the value of the integrator as long as the controller remains
in saturation. This takes only a couple of lines of code to implement. The result, even for this mild
case of integrator windup, is dramatic. Figure 14, using this windup protection method, settles to
the setpoint in approximately half the time taken by the system with no windup protection.

0 2 4 6 8 10 12
0

1

2
h1

0 2 4 6 8 10 12
0

1

2

h2
 a

nd
 S

et

0 2 4 6 8 10 12
6

8

10

Time

Q
in

Figure 14: PID Control of Two-Tanks,Large Setpoint Change, With Windup Protection

5.5 Noise and Aliasing

The world of digital computing is unique: there is no noise! That is why computer programs can be
run over and over again, giving identical results each time. The design concept behind computing,
digital, synchronous logic, assures that this state-of-affairs remains true within practical bounds
(practical enough to base banking operations on getting correct results!) Control computer interact
with the physical world. The interaction with the outside world is asynchronous so breaks one of
the basic rules by which noise-free operation is assured. Many of the signals used for control also
originate as analog signals. Analog signals characterize the value of the quantity represented with a
voltage (or current) value. Unlike a digital signal, whose information content is determined by the
number of bits and is fixed, an analog signal’s information content is determined by the magnitude
of the noise mixed in with the signal. All analog signals contain noise.

A problem unique to digital control arises under certain circumstances as an interaction between
the noise present in an analog signal and the control computer’s sampling process. For illustration,
we can imagine that the “noise” is a purely sinusoidal signal. If the sampling is at a frequency
much lower than the frequency of the noise signal, the noise appears in the sampled signal at full
amplitude, but at a frequency much lower than its original frequency. This is illustrated in Figure 15,
where the solid line is the original (analog) signal and the dashed line is the sampled version.

25

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

O
rig

in
al

 a
nd

 S
am

pl
ed

 S
ig

na
ls

Figure 15: Original Analog Signal and Aliased Sampled Signal

Once aliasing occurs, the standard method of removing noise, spectral filtering, can no longer be
used because the noise signal is now in the same frequency range as the information. For those used
to working with analog controllers and signal conditioning equipment, aliasing is counter-intuitive
since most analog equipment has natural low-pass filtering properties so that high frequency noise
tends to disappear in many cases and is easily filtered in others.

There is no easy solution to aliasing. The two relatively difficult solutions are to add an analog,
low-pass filter between the noise source and the sampling device or to sample at a high enough
rate so the noise can be removed after sampling. Both of these add considerable complexity to the
control system. Another approach is to avoid the problem entirely by using digital instruments such
as position encoders (incremental or absolute).

5.6 Computational Delay

Any delay in utilizing feedback information causes deterioration in the quality of control, up to
and including instability. The classical example of this is using a television camera on the moon to
show the operation of a vehicle or machine to an operator on earth. Because of the speed of light
limitations on transmission speed, it takes over a second for the television signal from the moon to
reach earth. The operator is thus seeing what was happening a second and some ago, not what is
happening at the time the image is being viewed. A decision is made on an action (for example, with
a joy stick) but it takes another second and a fraction for that signal to get back to the moon. If the
system on the moon being controlled is very slow, the three seconds or so of total delay won’t cause
much of a problem. If it is fast moving however, the operator will be playing a losing game by always
commanding actions that were appropriate for the time the signal was generated, but are no longer
appropriate by the time the signal actually reaches the actuator. Most human operators adopt a
wait-and-see strategy when faced with this type of situation. It works, but the overall performance
is vastly slower than it would be in the absence of the delay.

The time a computer takes for computation between reading the instrument signal into the
computer and generating the actuation output introduces such a delay. The worst case of such
delay occurs when a small computer is dedicated to the control of a single loop and takes the
full sample time to complete its computation. This introduces a full step delay into the system.

26

For the two tank system treated above, Figure 16 shows that introduction of a full step delay
in the small-signal (using the gains determined by the optimizer) results in an unstable and thus
completely unacceptable behavior (note that in the original case the simulation was built with the
imlicit assumption that the computing time was a small fraction of the sample time and thus did
not introduce any significant delay). In such circumstances, the controller must be retuned and will
only be able to sustain substantially lower gains and thus more sluggish response.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.68

0.7

0.72

0.74
h1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.68

0.7

0.72

0.74

h2
 a

nd
 S

et

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
2

2.5

3

3.5

Time

Q
in

Figure 16: Two Tanks System: Full Step Delay

5.7 Using Knowledge: Feedforward

“Knowledge is power” so don’t waste it! While the emphasis thus far has been on feedback control as
a means to compensate for ignorance, in many cases there is quite a lot of knowledge as to how the
system operates. That knowledge can be used as a feedforward signal in addition to the command
signal from the feedback controller. If it is reasonably good, the control object’s output will get
fairly close to its desired value just with the feedforward. The feedback will then have much less
work to do since the degree of ignorance is much less.

The two tank system offers two examples of potential use of feedforward. Knowing the setpoint,
the input flow rate that will be needed for steady-state maintenance of that height in the second
tank can be computed and added to the controller output. This does not change the observed
behavior very much, but it does allow for controller gain tuning that nearly eliminates the integral
gain. This makes the controller considerably more stable and robust as long as external unmeasured
disturbances are not so large as to need the higher I-gain. On the other hand, if the flow distur-
bance described in Section 4.8 could be measured, it could be compensated for with feedforward
almost instantaneously, reducing the system excursion due to that disturbance to almost nothing.
A measured flow disturbance in the second tank would fall in the middle since the feedforward flow
correction could be applied well before a significant change in the level of the second tank would be
detected.

27

5.8 Multiple Measurements: Cascade Control

Control systems with one measurement and one actuation point (SISO for single-input, single-
output) are very common, but do not by any means encompass the full universe of feedback control
systems. A full treatment of multiple-input, multiple-output (MIMO) systems is beyond the scope
of this article, but there is a widely used control structure that deals with many systems having
several measurements but only a single actuation (these might be called MISO but that acronym
does not seem to be used). More measurements than actuations is common because the cost of
measurement is generally much lower than the cost of actuation.

When the output of one component of a system becomes the input to the next a “cascade” is
said to be present. Examples of this are the power amplifier providing power to a motor or the
pump providing input flow to a tank. In these cases, it is tempting to add an instrument to the
intermediate output, measuring the current output of the amplifier or the flowrate from the pump.

The motion control example used in Section 5.2 took advantage of two measurements, position
and velocity, with a single actuation, force applied to the mass. A cascade control structure was
utilized with velocity control as the inner loop and position control as the outer loop. Most motion
systems also have a control loop inside the amplifier so that the amplifier command controls the
current applied to the motor. The two tank system could also use cascade control if the liquid height
in the first tank were to be measured as well as the liquid height in the second tank. In that case, the
liquid height control for the first tank would be the inner loop. This structure could be important
if there were a need to make sure the first tank did not overflow since the single loop structure does
not put any limits on height of the liquid in the first tank.

5.9 Gain Scheduling

When tuning a feedback control system that has a large operating range, it is often impossible to find
a set of controller parameters that will operate successfully across the entire range. Tunings that are
always stable may be excessively sluggish at some parts of the operating range, and those that give
lively performance may be unstable or highly oscillatory at other operating points. Probably the
most dramatic example of this situation is in the control of high performance supersonic aircraft.
The dynamic behavior changes so much as the plane goes from subsonic to supersonic that it is
essentially impossible to use the same controller for both situations. Even in one domain or the
other, the dynamic behavior remains a very strong function of altitude.

A solution to this problem is to schedule the gains so that they take on correct small-signal
tunings at different parts of the operating range. Computer-based controllers offer the ability to
store large tables of gains, and, most importantly, to carry out the transition computations that
give a “bumpless” transfer from one gain set to another. Bumpless transfer assures that the control
output does not make a sudden change when the gain set changes. If a pure P-control were being
used, for example, as the gain changed the output would also change. The presence of an integral
action, even if the I-gain is zero, allows the integrator value to be used to balance the output changes
from other control modes.

6 Design Based on Linear Models

If the real world is entirely nonlinear (and it is) why study linear system analysis? Because,

1. Small-signal behavior can often be adequately captured with linear models, and

2. Linear analysis is incredibly powerful when it is applicable.

28

6.1 The Magic of Linearity

Systems that are linear obey additive superposition. In qualitatitive terms, that means that if the
response to one particular input signal is known and so is the response to another, the response to
the sum of the two input signals is the sum of the corresponding outputs. In practice, this means
that the solutions to all linear problems are expressed in series form, all using the same set of series:
sines, cosines and exponentials (which are all part of the same series family).

Because the sinusoidal-exponential family is so well understood, behavioral characteristics of lin-
ear systems can be determined parametrically, without having to perform full simulations. The origin
of most of the linear system material pre-dates computers so is designed to extract the maximum
amount of information about a system with minimum computation.

Linear system analysis for control is covered in a large number of texts as well as in thousands
of research papers and articles. For that reason, only a few highlights will be pointed out here. The
reader can refer to the extensive literature for details.

6.2 Linearization

Linear models can be constructed from set of nonlinear differential equations, from simulations of
those equations, or from experiments with the actual system. In all cases, a linear model is created
that describes the system behavior near a specific operating point. When this process starts with
data from experiments with the actual system, it is usually called system identification, but the end
result is the same: a linear model.

When starting with a set of first-order (nonlinear) differential equations the object is to find the
local slopes for the relationship between each of the system (state) variables in each equation and
the rate of change of the corresponding state variable. This relationship can be expressed in matrix
form; the matrix of local slopes is called the “Jacobian” matrix.

This procedure yields the classic “state space” form of the linear system equations for a control
object,

d

dt
x = Ax+Bu; y = Cx+Du (5)

where x is a vector of the system state variables, u is a vector of system inputs, y is a vector
of system outputs, and A, B, C and D are matrices of (constant) coefficients. The sizes of the
coefficient matrices depend on the number of states, inputs and outputs.

While the equation is often written in this form in texts, for real systems this should be viewed as
an incremental description of the behavior near an equilibrium point. The state, input and output
variables represent changes from the equilibrium values. This form is the basis for a large number
of design and analysis methods based on linear algebra and calculus.

6.3 Transfer Functions

The most compact expression of a linear model is as an n-th order differential equation. The matrix
format often has many elements that are zero and a large number of relatively simple elements. The
n-th order form compacts all of the n2 elements of the matrix format to n elements. The transfer
function form originates as a Laplace transform, but is visually identical to the n-th order differential
equation format. The Laplace transform origin legitimizes manipulations using transfer functions
as polynomials that make it very easy to combine linear elements and get a single transfer function
for the combined system.

29

Transfer functions are freely convertable to state space matrix form and vice versa. The transfer
function format is unique to a given physical system, but the state space format is not. A new
set of state variables can be constructed from any linearly independent sum of other state variable
sets. Like the state space format, a transfer function represents the incremental behavior near an
equilibrium point.

“Classical” control design and analysis is based on the transfer function format. It focuses on
the design of single-input, single-output (SISO) control systems. Transfer functions represent SISO
systems very well, even for high order, complex dynamics.

6.4 Difference Equations

The state space and transfer function formats describe the continuous-time portion of the system,
normally the control object. Computer controlled systems, however, are hybrids: the controller is
discrete-time and the control object is continuous time. The discrete-time portion of the system is
described by difference equations rather than the differential equations that describe the continuous-
time portion. The discrete-time portion of the system description has two portions: a part that has
been converted from the continuous-time model and a part for the controller. The first part is
converted from a linear model, so will also be linear. The second part, the controller, is specified by
the system designer. It is “linearized” by omitting the nonlinear parts (such as saturations).

The state space format for the discrete time equations is very similar in appearance to the
continuous time version,

x(k + 1) = Fx(k) +Gu(k)
y(k) = Cx+Du

(6)

The coefficient matrices are sometimes given different names to avoid confusion, and sometimes
given the same names to indicate similarity of function. The index k is the sample time counter.

Because the controller is normally the “open” part of the design, it is customary to convert
the entire system to the discrete-time domain. There are a number of methods for converting the
continuous time part to discrete-time. If the equations can be solved (or the transforms inverted)
the conversion can be done exactly (“exactly” means that the responses will match at the sampling
instants; nothing is said about the behavior between samples). There are also several approximations
that are simpler to use, but only valid for specific ranges of sampling intervals.

6.5 Discrete-Time Transfer Functions

The Z-transform domain serves the same role for discrete-time systems that the Laplace domain
does for continuous-time: it legitimizes the use of transfer functions to combine transfer functions
for components and get a transfer function for overall system behavior. However, there are not
as many design methods based on the Z-transform as there are for the Laplace transform based
transfer function. As with the Laplace transfer function, conversions can be made back and forth
to the matrix format with the same uniqueness properties.

6.6 Equilibrium, Stability and Eigenvalues

Equilibrium, as defined above, becomes a very simple matter for linear systems: in most cases there
is only a single equilibrium. In some cases there are an infinite number of equilibrium points, but,
even with these systems, with the application of feedback control the final system normally has only
one equilibrium point. It is very convenient to transform the state variables for the linear model

30

of a system so that this equilibrium point is at the origin of the state space, so the equations are
often written in this form. Because of the linear properties, this transformation has no effect on the
results.

The other property of linear systems is that the stability properties at this equilibrium point are
global — that is, they extend throughout the state space. The linear model, of course, only has a
limited domain of applicability, so this result can be interpreted as extending the stability properties
at the equilibrium point to the full range of the linear model’s validity.

A major use of linear systems theory has been to parametrically define stability boundaries.
Since unstable performance of a feedback control system is absolutely unacceptable, this bound-
ary, expressed in terms of system parameters (such as controller gains), separates the region of
unacceptable from the region of might-be-OK.

With modern computing tools, it is possible to learn much more than just whether a system
is stable or not. Linear dynamic systems, discrete or continuous time, are described by a set of
numbers characterizing their behavior. There are n of these “eigen” or “characteristic” values for a
linear system, where n is the number of state variables. Examination of the set of values indicates
whether a system will be stable or not, oscillatory or not. The numerical values give information
about oscillatory frequency or speed of response. For systems of modest size (that is, modest number
of state variables) computing these values is simple and straightforward in engineering computation
systems such as Matlab or in Fortran, C, etc.

6.7 Pole Placement Design

Since the eigenvalues of a linear system reveal so much about how a system will behave, it is natural
to build a design method around placing them in desired locations. “Pole placement” (poles are
another name for eigenvalues) is a means of doing just that. Inm some cases, the controller gains
that will achieve the desired placement can be computed directly, in others optimization methods
can be used to find the relevant gains.

6.8 Linear Quadratic Optimal Control

If the control system model with multiple measurements and a single actuator is carried to its
extreme, there will be a measurement for every state variable. This represents the extreme because
any additional measurements will not add any new dynamic information. Added measurements
can be used for reliability or noise-reduction purposes, but from the perspective of linear controller
design they do not add anything.

Feedback control algorithms can be designed to take advantage of all of these measurements.
Linear quadratic optimal control (LQR for linear quadratic regulator) arises out of the much more
general optimal control field. In general, an optimal control formulation will give the open loop input
that is needed to optimize some specified performance of a dynamic system (it is closely related to
dynamic programming). In the particular case of a quadratic performance index combining the
square of the error and square of the actuation, the solution to the optimal control problem is a
feedback control where the measurements used for the feedback are all of the state variables. In this
formulation, each of the state variable is multiplied by a gain and the results are summed to get a
single actuation value. The result of the LQR formulation is the set of gains, based on the relative
weighting of the error and actuation in the performance index. The nice feature of LQR control as
compared to pole placement is that instead of having to specify where n eigenvalues should be placed
a set of performance weightings are specified that could have more intuitive appeal. The result is a

31

control that is guaranteed to be stable (to the extent, of course, that the model actually describes
the real, physical system).

It should be noted that the particular form of the weighting function falls out of the optimal
control theory. Although it does strike most people as a reasonable performance index, that is only
coincidence. If any other index is desired and indirect design method such as a numerical optimizer
must be used to achieve the design.

It is also possible to LQR if the number of measurements is less than the number of state
variables. This is accomplished through the use of an “estimator,” a formulation that uses the
linear system model to estimate all of the states based on measurement of only some of them. The
derivative action in the PID control is a very primitive form of estimator that adds one estimated
state variable to the measured variable that is used for SISO control.

32

