
Analog, Digital Signals; Computer
Structure

David M. Auslander
Mechanical Engineering

University of California at Berkeley
Copyright © 2007, D.M.Auslander

Copyright © 2007, D.M.Auslander 2

Signal Impedance

Relationship of current and voltage at a terminal
(port)
Recall, Power = current * voltage (properly
defined)

Copyright © 2007, D.M.Auslander 3

Output, Input Impedance

Output impedance (static)
Change in voltage associate with a load that draws
current

Input impedance (static)
Equivalent resistance looking into terminals of a
device

Maximize power by matching impedance
Minimize power by mismatching impedance

Copyright © 2007, D.M.Auslander 4

Impedance in Measurement and
Actuation

Measurement
Minimize insertion loss
High output impedance to draw minimum power
Amplifier with very high input impedance provides
isolation

Actuation
Maximize power to load
Power amplifier with very low output impedance

Copyright © 2007, D.M.Auslander 5

Signal Variables

Voltage or current
Voltage more common for labs because it is easier
to measure and work with
Current more common indistrially because it rejects
noise better

Can be “raw” or modulated
Information associated with instantaneous value or
with some property of the signal (eg, frequency)

Copyright © 2007, D.M.Auslander 6

Information Content

“How many decisions can be made from this
signal?”
Information theory (Claude Shannon)
Closely related to entropy, 2nd law of
thermodynamics
Common measure: bits

One bit one decision
Number of decisions = 2^n; n is number of bits

Copyright © 2007, D.M.Auslander 7

Analog Signals

Information is signal variable value
Resolution depends only on system quality

Mainly noise, but also type of recording equipment,
etc.
Information content is theoretically infinite
Actual information content is probabilistic

Copyright © 2007, D.M.Auslander 8

Digital Signals

One wire, one bit
Signal decision MUCH wider than noise

Nominal, eg, 0 volt and 5 volt
Buffer zone to avoid ambiguity
Device (“gate”) output s are guaranteed to be far
away from ambiguous range for device inputs
Example …

Copyright © 2007, D.M.Auslander 9

TTL Signal Buffer Zones

(Approximate) buffer zones so devices can
never(!) confuse high and low (or 1 and 0)

Output for high > 3.5 volts
Input interprets high as > 2.5 volts => 1 volt buffer
Output for low < 1.5 volts
Input interprets low as < 0.7 volts => 0.8 volt buffer

Between these values is undefined

Copyright © 2007, D.M.Auslander 10

(Nearly) Noise Free Operation

These buffers are big enough so that signals can
be propagated with no noise at all.
Many wires are needed to get a signal with
significant information content
In addition to digital signal buffer, error detection
and correction information can be added to a
signal
Example: parity bit

Copyright © 2007, D.M.Auslander 11

Synchronous Circuits

Digital (binary) information gives noise-free
values
Large circuits have timing issues

Based on how long it takes signals to propagate
from one place in the circuit to another

Using a “clock” eliminates that error source as
well

All subcircuits must settle before next tick of clock

Copyright © 2007, D.M.Auslander 12

Computers

Based on digital logic and synchronous circuits
Use error detection and correction internally
Intrinsic error rate is so low we are willing to bet
our lives on them!
Software “bugs” way more common than
operating errors

Copyright © 2007, D.M.Auslander 13

Computer Operating Principles
The Nickel Tour!

Data – collections of binary signals
Data items coded according to a variety of
conventions
Integers (signed or unsigned), floats, characters, etc.
Instructions – tell computer what to do

Central Processing Unit (CPU)
Registers – hold data
Processors – operate on data in registers

Copyright © 2007, D.M.Auslander 14

Memory

Technically, a separate memory is not needed
A “register” (see CPU) is memory
Register circuitry, however, is very expensive (and very
fast)
“Memory” is much slower, much bigger, and much
cheaper
Memory contains a mix of instructions and data

Copyright © 2007, D.M.Auslander 15

Address Space

The memory uses “addresses” to identify specific data
Addresses used in programs translate into electrical
signals that operate the memory
“Logical” addresses (in programs) can correspond
directly to physical addresses (in memory) or can be
mapped by access circuits

Copyright © 2007, D.M.Auslander 16

How It Works

“Instruction” – unit activity
CPU gets instruction from memory (stores it in a
register) and figures out what to do
Gets data from memory if necessary
Operates on data in registers
Returns result(s) to registers
Writes data to memory if necessary

Copyright © 2007, D.M.Auslander 17

Sequential Device

Computing is thus entirely sequential
One instruction at a time
Instructions are quite primitive
High level languages retain sequential nature
(Java, etc.) – line-at-a-time

Copyright © 2007, D.M.Auslander 18

Timing

This activity is synchronized by the system
“clock”

A clock is a circuit that provides a constant
frequency square-wave output

Instruction takes one or more ticks (cycles) to
complete
Typical desktop (2007) has ~1-3 GHz clock, so
instruction completes in a modest number of
nanoseconds

Copyright © 2007, D.M.Auslander 19

Speed of Embedded Processors

Embedded applications have a much wider
range
Economics drives computing power (and how
much can be accomplished)
Speeds can be as much as 1000 Xs slower!

Copyright © 2007, D.M.Auslander 20

Connecting the Computer to the
Outside World

Peripheral devices – printers, disk drives, keyboard,
display, control I/O, etc.

These are MUCH slower than the computer

Separate facilities (hardware) are used to connect them

They use an address space – sometimes common with
memory, sometimes separate

Copyright © 2007, D.M.Auslander 21

Real Computers

This is a simplified model (corresponds to early
computers)
Computers use many tricks to speed up
operation

Cache, pipelines, multiple data paths, etc.
General principles remain the same (and have
been for half a century!)

Copyright © 2007, D.M.Auslander 22

What Makes it Work?

Almost error free, regardless of scale!
This is accomplished by

Discrete data representation (bits)
Discrete time (clock synchronized)
Minimize size to reduce power, increase speed
Flexibility: intermix data of various codings and
instructions in memory

