Analog, Digital Signals; Computer
Structure

David M. Auslander
Mechanical Engineering
University of California at Berkeley

Copyright © 2007, D.M.Auslander



Signal Impedance

> Relationship of current and voltage at a terminal

(port)
> Recall, Power = current * voltage (properly
defined)

Copyright © 2007, D.M.Auslander



Output, Input Impedance

> Output Impedance (static)

+ Change In voltage associate with a load that draws
current

> Input Impedance (static)

+ Equivalent resistance looking into terminals of a
device

> Maximize power by matching impedance
> Minimize power by mismatching impedance

Copyright © 2007, D.M.Auslander



Impedance in Measurement and
Actuation

> Measurement
» Minimize insertion loss
<+ High output impedance to draw minimum power
= Amplifier with very high input impedance provides
Isolation
> Actuation
+» Maximize power to load
+ Power amplifier with very low output impedance

Copyright © 2007, D.M.Auslander



Signal Variables

> Voltage or current

<+ Voltage more common for labs because It is easier
to measure and work with

» Current more common indistrially because It rejects
noise better

> Can be “raw” or modulated

<+ Information associated with instantaneous value or
with some property of the signal (eg, frequency)

Copyright © 2007, D.M.Auslander



Information Content

> “How many decisions can be made from this
signal?”

> Information theory (Claude Shannon)

» Closely related to entropy, 2" law of
thermodynamics

> Common measure: bits
<« One bit =» one decision
+» Number of decisions = 2*n: n Is number of bits

Copyright © 2007, D.M.Auslander



Analog Signals

> Information Is signal variable value

> Resolution depends only on system quality

<+ Mainly noise, but also type of recording equipment,
etc.

<+ Information content is theoretically infinite
» Actual information content is probabilistic

Copyright © 2007, D.M.Auslander



Digital Signals

» One wire, one bit

» Signal decision MUCH wider than noise
<~ Nominal, eg, 0 volt and 5 volt

> Buffer zone to avoid ambiguity

> Device (“gate”) output s are guaranteed to be far
away from ambiguous range for device Inputs

> Example ...

Copyright © 2007, D.M.Auslander



TTL Signal Buffer Zones

> (Approximate) buffer zones so devices can
never(!) confuse high and low (or 1 and 0)

<+ Qutput for high > 3.5 volts

+ Input interprets high as > 2.5 volts => 1 volt buffer
<+ QOutput for low < 1.5 volts

» Input interprets low as < 0.7 volts => 0.8 volt buffer

> Between these values Is undefined

Copyright © 2007, D.M.Auslander



(Nearly) Noise Free Operation

> These buffers are big enough so that signals can
be propagated with no noise at all.

> Many wires are needed to get a signal with
significant information content

> In addition to digital signal buffer, error detection
and correction information can be added to a
signal

> Example: parity bit

Copyright © 2007, D.M.Auslander 10



Synchronous Circuits

> Digital (binary) information gives noise-free
values

> Large circuits have timing issues

» Based on how long it takes signals to propagate
from one place in the circuit to another

> Using a “clock” eliminates that error source as
well

« All subcircuits must settle before next tick of clock

Copyright © 2007, D.M.Auslander 11



Computers

> Based on digital logic and synchronous circuits
> Use error detection and correction internally

> Intrinsic error rate Is so low we are willing to bet
our lives on them!

> Software “pbugs” way more common than
operating errors

Copyright © 2007, D.M.Auslander 12



Computer Operating Principles
The Nickel Tour!

> Data — collections of binary signals

» Data items coded according to a variety of
conventions

<+ Integers (signed or unsigned), floats, characters, etc.
<+ Instructions - tell computer what to do

> Central Processing Unit (CPU)
+ Registers — hold data
+ Processors — operate on data in registers

Copyright © 2007, D.M.Auslander 13



Memory

> Technically, a separate memory Is not needed
> A “register” (see CPU) is memory

> Register circuitry, however, Is very expensive (and very
fast)

> “Memory” Is much slower, much bigger, and much
cheaper

> Memory contains a mix of instructions and data

Copyright © 2007, D.M.Auslander 14



Address Space

> The memory uses “addresses” to identify specific data

> Addresses used in programs translate into electrical
signals that operate the memory

> “Logical” addresses (in programs) can correspond
directly to physical addresses (in memory) or can be
mapped by access circuits

Copyright © 2007, D.M.Auslander 15



How It Works

> “Instruction” — unit activity

» CPU gets instruction from memory (stores it in a
register) and figures out what to do

> Gets data from memory If necessary
> Operates on data In registers

> Returns result(s) to registers

> Writes data to memory If necessary

Copyright © 2007, D.M.Auslander 16



Sequential Device

» Computing Is thus entirely sequential
> One Instruction at a time
> Instructions are quite primitive

> High level languages retain sequential nature
(Java, etc.) — line-at-a-time

Copyright © 2007, D.M.Auslander

17



Timing

> This activity is synchronized by the system
“clock”

+ A clock Is a circuit that provides a constant
frequency square-wave output

> Instruction takes one or more ticks (cycles) to
complete

> Typical desktop (2007) has ~1-3 GHz clock, so
Instruction completes in a modest number of
nanoseconds

Copyright © 2007, D.M.Auslander 18



Speed of Embedded Processors

> Embedded applications have a much wider
range

» Economics drives computing power (and how
much can be accomplished)

> Speeds can be as much as 1000 Xs slower!

Copyright © 2007, D.M.Auslander 19



Connecting the Computer to the
Outside World

> Peripheral devices — printers, disk drives, keyboard,
display, control I/O, etc.

> These are MUCH slower than the computer
> Separate facilities (hardware) are used to connect them

> They use an address space — sometimes common with
memory, sometimes separate

Copyright © 2007, D.M.Auslander 20



Real Computers

> This Is a simplified model (corresponds to early
computers)

» Computers use many tricks to speed up
operation

» Cache, pipelines, multiple data paths, etc.

> General principles remain the same (and have
been for half a century!)

Copyright © 2007, D.M.Auslander 21



What Makes it Work?

> Almost error free, regardless of scale!

> This Is accomplished by
+ Discrete data representation (bits)
< Discrete time (clock synchronized)
<+~ Minimize size to reduce power, increase speed

+ Flexibility: intermix data of various codings and
Instructions in memory

Copyright © 2007, D.M.Auslander 22



