
1

Time: Its Measurement and Use

Implementing Real Time Software for
Control of Mechanical Systems

copyright © 2000-07, D.M.Auslander

copyright © 2000−07, D.M.Auslander 2

What’s Time?

A constant frequency oscillator
Don’t ask what “constant frequency” means – the
discussion gets circular!

Small amplitude pendulum, mass-spring are best
known

Read Longitude by Sobel
Two key design problems:

Keeping the frequency constant (age, temperature)
Getting energy to the oscillator (escapement)

copyright © 2000−07, D.M.Auslander 3

Limit Cycle Oscillators
Harmonic oscillators come to mind to get constant
frequency (pendulum, mass-spring, inductor-
capacitor)

However, even if “perfect” (i.e., no friction) no energy
can be removed for observation!

Limit cycle oscillators are needed for timekeeping
Constant input (power source)
Oscillatory output, amplitude independent of initial
condition
Must be nonlinear

copyright © 2000−07, D.M.Auslander 4

Limit Cycle Examples

Constant inflow
Valve is spring-
loaded
Float touches
switch
Valve opens
Tank empties
Valve closes
Cycle repeats

Water Tank

Water level

Float

Switch

LatchValve

Signal to
operate

latch

Water supply

copyright © 2000−07, D.M.Auslander 5

Relaxation Oscillator

This is a relaxation oscillator
Each cycle is a “tick”
Timing consistency depends on water supply
being constant
Emptying must be fast relative to cycle time to not
affect timing

copyright © 2000−07, D.M.Auslander 6

Another Version

Water level rises
Floods siphon
Tank empties
Cycle repeats

Water supply

Water level

Tank

Siphon

copyright © 2000−07, D.M.Auslander 7

Simpler, But Less Control

Emptying speed of siphon is slower
Still requires constant inflow rate for accuracy
Resemblance to the common household
appliance “invented” by the late 19th century
Englishman Thomas Crapper is not a coincidence
(see
http://www2.exnet.com/1995/11/01/science/scienc
e.html for an interesting discussion of the
surrounding history)

copyright © 2000−07, D.M.Auslander 8

Electrical Version

Analogous circuit can be constructed using
capacitor
It depends on constant voltage of source

copyright © 2000−07, D.M.Auslander 9

Better – Use Natural Frequency

Mass-spring (very low friction)
Apply force to mass when it is near its rest
position

But, only when it is moving in positive direction
Force accelerates it in the same direction

Turns harmonic oscillator into limit cycle
Timing depends on mass-spring combination
Almost independent of strength of force

copyright © 2000−07, D.M.Auslander 10

Escapement

A mechanical equivalent to the scheme above
Applied to either pendulum or mass-spring
Also used to operate the hands of the clock in
classical applications
Mechatronics style can just take off a signal

copyright © 2000−07, D.M.Auslander 11

Quartz Crystal

Electronic equivalent
Very stable

But needs elaborate compensation to meet real clock
accuracy – this computer is off by about a minute a
week!

Quartz is piezo-electric
Strain <-> voltage

Has mechanical natural frequency
Use piezo effect to insert energy

copyright © 2000−07, D.M.Auslander 12

Real Time Software

Time is most commonly used incrementally
Do something every XX time units
Do something XX time units after some event

Sometimes it’s absolute
Time-of-day

Time coordination with multiple processors at
same hierarchy level (see the movie Gallipoli)

Avoiding time jumps (missed events, events happen
twice)

copyright © 2000−07, D.M.Auslander 13

Time: Real and Otherwise

User level: time is always available
GetTimeNow() or similar function
Result depends on context:

Simulated time
Calibrated time
Real time based on several different measurement
methods

copyright © 2000−07, D.M.Auslander 14

Using Time

Simple Dispatcher (Group-priority software)
Distributes scans to tasks
Does not know anything about task context
Internal task structure determines actions base on
events (time is an event)

Scheduler (TranRun4 software)
Knows when a task wants to run
Only gives it scans on schedule
Time can be implicit in the task

copyright © 2000−07, D.M.Auslander 15

MeasuringTime

Simulation
Internal time increment
Incremented with each scan
flat model: all scans are equal
Δ t small to simulate a fast computer (simulate slowly)
Δ t large to simulate a slow computer (simulate fast)

“Time” is a number in memory
No relation to reality

copyright © 2000−07, D.M.Auslander 16

Calibrated Time

Calibrated time
Same code as simulated time
Calibrate program with real clock
Easy to implement
Adjust Δ t until running time matches clock time
Not very accurate for short or long periods
OK in some cases where mid-length intervals are
needed
Must be recalibrated with change in code or computer

copyright © 2000−07, D.M.Auslander 17

Free Running Clock

Use the oscillator/counter combination
Free running clock

Clock, counter, register to read counter
Read register to find out current time
PC: clock at about 1.18 MHz
Time resolution is ~1 microsecond
Easy to use and accurate enough for mechanical
system control

copyright © 2000−07, D.M.Auslander 18

Free Running Clock: Rollover

PC clock/counter is 16-bit
Counts to limit in about 60 milliseconds
Counter rolls over and keeps counting
Two problems:

Handling rollover arithmetically (free running means
rollover is not predictable)
Not loosing track of a complete rollover (inaccurate
time) – the used car syndrome

copyright © 2000−07, D.M.Auslander 19

Rollover Arithmetic

Get time from differences
In 2’s complement arithmetic, differences are
correct across a rollover

counter is unsigned
difference is 2’s complement (signed)
Example (4-bit counter): 0010 - 1101 (curr - past)
0010

- 1101
0101 (through away the final borrow)

copyright © 2000−07, D.M.Auslander 20

Rollover . . .

2 – (-3) = 5; trick for 2’s comp negative #s:
Bitwise complement, add 1; 1101->0010->0011 (-3)

Use the resulting difference to get running time
Add it to current time using wide word
How wide: 32 bit, unsigned gives 4x10^9 counts

4x10^9 counts / (~3.6x10^9 counts/hr) = ~1 hour
Not nearly enough for industrial applications
Reference: the year 2,000 problem!

copyright © 2000−07, D.M.Auslander 21

Missing Rollovers

Arithmetic handles one rollover
Two (or more) rollovers spell trouble!
No way to know about it
Time becomes inaccurate
Solutions:

Use “guard” interval
Use interrupts

copyright © 2000−07, D.M.Auslander 22

Guard Interval

Software clock is serviced whenever
GetTimeNow() is called
Difference from last service is computed
If difference > max-interval / K => error
Statistical - will not guarantee to catch errors
In practice - very good, K: 2 to 4
Balance worst case latency with how fast error is
found (false positive vs. false negative)

copyright © 2000−07, D.M.Auslander 23

Service Clock with Interrupt

Interrupt: hardware-based preemptive mechanism
More details later
Simple usage: preempt user software to service
clock
Guarantees accurate free-running time regardless
of task execution time
Simplest case: count interrupts (but cruder time
granulation)

copyright © 2000−07, D.M.Auslander 24

PC Clocks

Windows-95, Windows-NT
Interrupt serviced free-running clock
OS does interrupts
~1 microsecond resolution

DOS (not in Windows)
Free-running clock with guard interval
Or user-written interrupt service
~1 microsecond resolution
with K=2, ~30 ms maximum execution time

copyright © 2000−07, D.M.Auslander 25

Testing the Time Environment
while(Time < EndTime)

{ // Produces Histograms of run time
Time = GetTimeNow();
delt = Time - LastTime;
LastTime = Time;
for(j = 0; j < nbin; j++)

{
if(delt <= values[j])

{
occur[j]++;
break;
}

}
IncrementTime(); // For internal time mode
}

copyright © 2000−07, D.M.Auslander 26

Testing

Run this in several environments to see
differences in time behavior
Win-95 w/IDE, Win-95 File manager, DOS
All done on same Pentium-133 portable
Total run time is 10 seconds

copyright © 2000−07, D.M.Auslander 27

Result:: Win32/console/Win-95
0.000005 0 --- 1st column: time in seconds; 2nd number of scans
0.000010 1026347
0.000019 2228
0.000037 1252
0.000073 585
0.000142 420
0.000277 118
0.000541 370
0.001057 18
0.002064 9
0.004029 3
0.007868 4
0.015364 20
0.030000 9

> 0.030000 4

copyright © 2000−07, D.M.Auslander 28

Consistency of Results

This is real time!
Simple, but still real time
Results depend on asynchronous events
Program code is the same every iteration
However, there is a broad distribution of execution
times!
Here are two more runs done using identical
procedures:

copyright © 2000−07, D.M.Auslander 29

Two More Runs . . .
0.000005 0 0.000005 0
0.000010 3509 0.000010 903226
0.000019 839434 0.000019 2509
0.000037 1423 0.000037 1000
0.000073 459 0.000073 389
0.000142 446 0.000142 462
0.000277 126 0.000277 125
0.000541 350 0.000541 361
0.001057 35 0.001057 40
0.002064 6 0.002064 6
0.004029 5 0.004029 4
0.007868 4 0.007868 5
0.015364 9 0.015364 8
0.030000 21 0.030000 28

> 0.030000 16 > 0.030000 14

copyright © 2000−07, D.M.Auslander 30

Further Environmental Effect

The previous were run from the Borland IDE
(integrated develpment environment)
Here are two runs that are done from the file
manager . . .

copyright © 2000−07, D.M.Auslander 31

Run From File Manager
0.000005 11498 0.000005 0
0.000010 1221676 0.000010 1245707
0.000019 1098 0.000019 1118
0.000037 672 0.000037 666
0.000073 520 0.000073 364
0.000142 330 0.000142 392
0.000277 55 0.000277 57
0.000541 345 0.000541 337
0.001057 145 0.001057 175
0.002064 54 0.002064 29
0.004029 22 0.004029 3
0.007868 3 0.007868 1
0.015364 7 0.015364 7
0.030000 20 0.030000 22

> 0.030000 18 > 0.030000 16

copyright © 2000−07, D.M.Auslander 32

From File Manager

These are significantly faster
Still broadly distributed
Still different from run-to-run

copyright © 2000−07, D.M.Auslander 33

Real Time in DOS

Now try DOS (reboot, not from Windows)
Uses similar timer, but maintained by program
instead of OS
DOS remains popular for home-grown real time
systems
Embedded PCs popular and easy to work with
DOS is cheap
Slowly disappearing

copyright © 2000−07, D.M.Auslander 34

DOS Results
0.000005 16378
0.000010 1971682
0.000019 1
0.000037 0
0.000073 0
0.000142 0
0.000277 0
0.000541 0
0.001057 0
0.002064 0
0.004029 0
0.007868 0
0.015364 0
0.030000 0

> 0.030000 0

copyright © 2000−07, D.M.Auslander 35

Time Performance Conclusion

Environment has major effect on performance
DOS is fastest
DOS interferes least
Win-95 has relatively long OS events that preempt
user program (Win-NT/2000 is similar)
Win-95 or NT good for prototype debugging or
slow processes, not for production

copyright © 2000−07, D.M.Auslander 36

Time Synchronization
Cooperative activities can be synchronous or
asynchronous
If they are to be coordinated, asynchronous activities
require a “handshake”
If handshake is across a network it causes timing errors
Activities can be active (do something) or passive (record
something)
In either case, time synchronization can give closer
coordination than asynchronous handshake

copyright © 2000−07, D.M.Auslander 37

Network Time Protocols

Time stamping and its uses
Network Time Protocol (NTP), Simple NTP
(SNTP) and IEEE-1588
SNTP is used for Windows time synchronization
Accuracy depends on network delays
IEEE-1588 uses time stamping at lowest possible
level to eliminate software errors
Accuracy around 1 micro-sec or better

